Suppr超能文献

用于胸部X光图像肺部分割的视觉Transformer

Vision Transformers for Lung Segmentation on CXR Images.

作者信息

Ghali Rafik, Akhloufi Moulay A

机构信息

Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9 Canada.

出版信息

SN Comput Sci. 2023;4(4):414. doi: 10.1007/s42979-023-01848-4. Epub 2023 May 24.

Abstract

Accurate segmentation of the lungs in CXR images is the basis for an automated CXR image analysis system. It helps radiologists in detecting lung areas, subtle signs of disease and improving the diagnosis process for patients. However, precise semantic segmentation of lungs is considered a challenging case due to the presence of the edge rib cage, wide variation of lung shape, and lungs affected by diseases. In this paper, we address the problem of lung segmentation in healthy and unhealthy CXR images. Five models were developed and used in detecting and segmenting lung regions. Two loss functions and three benchmark datasets were employed to evaluate these models. Experimental results showed that the proposed models were able to extract salient global and local features from the input CXR images. The best performing model achieved an F1 score of 97.47%, outperforming recent published models. They proved their ability to separate lung regions from the rib cage and clavicle edges and segment varying lung shape depending on age and gender, as well as challenging cases of lungs affected by anomalies such as tuberculosis and the presence of nodules.

摘要

在胸部X光(CXR)图像中准确分割肺部是自动化CXR图像分析系统的基础。它有助于放射科医生检测肺部区域、疾病的细微迹象,并改善患者的诊断过程。然而,由于存在边缘肋骨、肺部形状的广泛变化以及受疾病影响的肺部,肺部的精确语义分割被认为是一个具有挑战性的案例。在本文中,我们解决了健康和不健康CXR图像中的肺部分割问题。开发了五个模型并用于检测和分割肺部区域。采用了两种损失函数和三个基准数据集来评估这些模型。实验结果表明,所提出的模型能够从输入的CXR图像中提取显著的全局和局部特征。表现最佳的模型F1分数达到了97.47%,优于最近发表的模型。它们证明了能够将肺部区域与肋骨和锁骨边缘分开,并根据年龄和性别分割不同形状的肺部,以及应对受诸如肺结核和结节等异常影响的具有挑战性的肺部病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验