Tran Mil Thi, Son Geon Hui, Song Young Jong, Nguyen Ngan Thi, Park Seonyeong, Thach Thanh Vu, Kim Jihae, Sung Yeon Woo, Das Swati, Pramanik Dibyajyoti, Lee Jinsu, Son Ki-Ho, Kim Sang Hee, Vu Tien Van, Kim Jae-Yean
Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, Vietnam.
Front Plant Sci. 2023 May 15;14:1186932. doi: 10.3389/fpls.2023.1186932. eCollection 2023.
Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance. In this study, we characterized the edited lines under several abiotic and biotic stresses to examine the possibility of multiple stress tolerance. Our data reveal that the 8CM removal variants of HK and the KO alleles of both HK and 15T01 cultivars exhibited moderate heat stress tolerance. Similarly, plants carrying either the domains of the PRD removal variant (PR1v1) or 8CM removal variants (PR2v2 and PR2v3) showed better germination under osmosis stress (up to 200 mM mannitol) compared to the WT control. Moreover, the PR1v1 line continuously grew after 5 days of water cutoff. When the edited lines were challenged with pathogenic bacteria of pv. () DC3000, the growth of the bacterium was significantly reduced by 2.0- to 2.5-fold compared to that in WT plants. However, the edited alleles enhanced susceptibility against f. sp. , which causes fusarium wilt. CRISPR-Cas9-based precise domain editing of the gene generated multi-stress-tolerant alleles that could be used as genetic materials for tomato breeding.
最近,基于CRISPR-Cas9的基因组编辑已广泛应用于植物育种。在我们之前的报告中,利用CRISPR-Cas9多重编辑方法对一个编码富含脯氨酸的杂交蛋白1(HyPRP1)的番茄基因进行了编辑,该基因是盐胁迫反应的负调控因子,编辑导致其功能域、富含脯氨酸结构域(PRD)和八个半胱氨酸基序(8CM)被精确去除。随后我们证明,去除番茄中HyPRP1的PRD结构域可赋予最高水平的耐盐性。在本研究中,我们对编辑后的株系在几种非生物和生物胁迫下的特性进行了表征,以检验多重胁迫耐受性的可能性。我们的数据表明,HK的8CM缺失变体以及HK和15T01品种的KO等位基因表现出中度热胁迫耐受性。同样,与野生型对照相比,携带PRD缺失变体(PR1v1)结构域或8CM缺失变体(PR2v2和PR2v3)的植株在渗透胁迫(高达200 mM甘露醇)下表现出更好的发芽率。此外,PR1v1株系在停水5天后仍能持续生长。当用丁香假单胞菌番茄致病变种(Pseudomonas syringae pv. tomato (Pto))DC3000对编辑后的株系进行侵染时,与野生型植株相比,该细菌的生长显著降低了2.0至2.5倍。然而,编辑后的等位基因增强了对尖孢镰刀菌(Fusarium oxysporum f. sp. lycopersici)的易感性,该病菌可导致番茄枯萎病。基于CRISPR-Cas9对HyPRP1基因进行的精确结构域编辑产生了多胁迫耐受性等位基因,可作为番茄育种的遗传材料。