Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa.
Int J Mol Sci. 2021 Jun 15;22(12):6427. doi: 10.3390/ijms22126427.
Plant immunity is mediated in large part by specific interactions between a host resistance protein and a pathogen effector protein, named effector-triggered immunity (ETI). ETI needs to be tightly controlled both positively and negatively to enable normal plant growth because constitutively activated defense responses are detrimental to the host. In previous work, we reported that mutations in (), identified in a suppressor screen, reactivated EDS1-dependent ETI to pv. () DC3000. Besides, mutations in boosted defense responses to the generalist chewing insect and the sugar beet cyst nematode . Here, we show that mutations in enhance susceptibility to the fungal necrotrophs f. sp. and in Arabidopsis. To translate knowledge obtained in research to crops, we generated alleles in tomato using a CRISPR/Cas9 system. Interestingly, mutants increased expression of SA-pathway defense genes and enhanced resistance to DC3000. In contrast, mutants elevated susceptibility to . Together, these data suggest that SRFR1 is functionally conserved in both Arabidopsis and tomato and functions antagonistically as a negative regulator to (hemi-) biotrophic pathogens and a positive regulator to necrotrophic pathogens.
植物免疫在很大程度上是由宿主抗性蛋白和病原体效应蛋白之间的特异性相互作用介导的,这种相互作用被称为效应子触发的免疫(ETI)。为了使植物正常生长,ETI 需要被正向和负向严格控制,因为持续激活的防御反应对宿主是有害的。在之前的工作中,我们报道了在一个抑制子筛选中鉴定出的突变体 (),重新激活了 EDS1 依赖的 ETI,使其对 pv. ()DC3000 产生反应。此外, 突变体增强了对一般性咀嚼昆虫 和甜菜胞囊线虫 的防御反应 。在这里,我们表明 突变体增强了对真菌坏死营养生物 和 的敏感性。为了将在 研究中获得的知识转化为作物,我们使用 CRISPR/Cas9 系统在番茄中产生了 突变体。有趣的是, 突变体增加了 SA 途径防御基因的表达,并增强了对 DC3000 的抗性。相比之下, 突变体增加了对 的敏感性。总之,这些数据表明,SRFR1 在拟南芥和番茄中具有功能保守性,作为(半)生物营养性病原体的负调控因子和坏死营养性病原体的正调控因子发挥作用。