文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症中的 EMT/MET 可塑性与静止期的 Go-or-Grow 决策:同一枚硬币的两面?

EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin?

机构信息

Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.

Al-Mana College for Medical Science, Ahsa, Saudi Arabia.

出版信息

Mol Cancer. 2023 May 31;22(1):90. doi: 10.1186/s12943-023-01793-z.


DOI:10.1186/s12943-023-01793-z
PMID:37259089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10230810/
Abstract

Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathological (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at different levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and G, an intermediate phase allowing quiescent stem cells to enter the cell cycle rapidly.

摘要

上皮间质转化 (EMT) 和间质上皮转化 (MET) 是细胞可塑性的遗传决定因素。这些程序在生理条件下(胚胎发育、伤口愈合)和病理条件下(器官纤维化、癌症)发挥作用。在癌症中,EMT 和 MET 在不同层面干扰各种信号通路。这导致基因表达程序的巨大改变,影响了癌症的大多数特征,如果不是全部的话,如对增殖和诱导死亡信号的反应、致瘤性和细胞干性。癌细胞中的 EMT 涉及细胞骨架的大规模重组、上皮完整性的丧失和间质特征的获得,例如间质型细胞迁移。在这方面,EMT/MET 可塑性与 Go-or-Grow 概念高度相关,该概念假定细胞迁移和增殖之间存在二分关系。Go-or-Grow 决策在 EMT/MET 可塑性起核心作用的过程中至关重要,例如在伤口愈合、癌症复发和转移期间动员干细胞。在这里,我们概述了静止状态在干细胞和转移性小生境中的维持,重点讨论了 EMT/MET 调节网络在 Go-or-Grow 转换中的意义。特别是,我们讨论了处于混合拟间质状态的细胞与 G 之间的类比,G 是允许静止干细胞快速进入细胞周期的中间阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/ed3aa431f5cc/12943_2023_1793_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/edbd0b9f6035/12943_2023_1793_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/b1b909398581/12943_2023_1793_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/ed3aa431f5cc/12943_2023_1793_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/edbd0b9f6035/12943_2023_1793_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/b1b909398581/12943_2023_1793_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c180/10230810/ed3aa431f5cc/12943_2023_1793_Fig3_HTML.jpg

相似文献

[1]
EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin?

Mol Cancer. 2023-5-31

[2]
Molecular Pathways Mediating Metastases to the Brain via Epithelial-to-Mesenchymal Transition: Genes, Proteins, and Functional Analysis.

Anticancer Res. 2016-2

[3]
A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer.

Semin Cancer Biol. 2023-5

[4]
Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development.

Cell Commun Signal. 2021-7-22

[5]
Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs.

Curr Opin Cell Biol. 2013-2-20

[6]
Stability of the hybrid epithelial/mesenchymal phenotype.

Oncotarget. 2016-5-10

[7]
Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness.

Mol Oncol. 2017-7

[8]
To differentiate or not--routes towards metastasis.

Nat Rev Cancer. 2012-5-11

[9]
Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

Methods Mol Biol. 2016

[10]
Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas.

Pharmacol Ther. 2018-9-28

引用本文的文献

[1]
Upregulation of and Suggests Reversal Towards Epithelial State in Venous Tumour Thrombus of Clear Cell Renal Cell Carcinoma.

Int J Mol Sci. 2025-8-18

[2]
Luminal and Basal Subtypes Across Carcinomas: Molecular Programs Beyond Tissue of Origin.

Cancers (Basel). 2025-8-21

[3]
Targeting the self-amplifying loop between ATF6 and SNAI1 to inhibit epithelial‒mesenchymal transition in fibrotic lesions.

Theranostics. 2025-7-11

[4]
Oxidative stress-induced ZEB1 acetylation drives a hybrid epithelial-mesenchymal phenotype and promotes lung metastasis in triple-negative breast cancer.

Redox Biol. 2025-8-19

[5]
CD99 is a potential diagnostic and immunological biomarker in pan-cancer.

Discov Oncol. 2025-8-18

[6]
WISP1 drives esophageal squamous cell carcinoma progression via modulation of cancer-associated fibroblasts and immune microenvironment.

Front Immunol. 2025-7-23

[7]
Autocrine TGFβ2 enforces a transcriptionally hybrid cell state in Ewing sarcoma.

bioRxiv. 2025-6-12

[8]
Transcriptional profiling clarifies a program of enzalutamide extreme non-response in lethal prostate cancer.

NPJ Precis Oncol. 2025-7-7

[9]
Role of Mesenchymal Markers in Colorectal Cancer Metastasis.

Mol Biol Rep. 2025-7-4

[10]
Connexin43 functions as a non-canonical phenotypic stability factor in promoting hybrid Epithelial/Mesenchymal phenotype in glioblastoma cells.

Transl Oncol. 2025-6-30

本文引用的文献

[1]
The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition.

J Biol Eng. 2023-3-2

[2]
GRHL2-controlled gene expression networks in luminal breast cancer.

Cell Commun Signal. 2023-1-23

[3]
Landscape of epithelial-mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks.

Elife. 2022-10-21

[4]
Cell-Cell Interactions Drive Metastasis of Circulating Tumor Microemboli.

Cancer Res. 2022-8-3

[5]
Epithelial to mesenchymal transition during mammalian neural crest cell delamination.

Semin Cell Dev Biol. 2023-3-30

[6]
Circulating tumour cells in the -omics era: how far are we from achieving the 'singularity'?

Br J Cancer. 2022-7

[7]
Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1.

Cell Rep. 2022-1-11

[8]
Distinct contributions of partial and full EMT to breast cancer malignancy.

Dev Cell. 2021-12-6

[9]
KLF4 Induces Mesenchymal-Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors.

Cancers (Basel). 2021-10-13

[10]
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew.

Cancers (Basel). 2021-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索