Suppr超能文献

基于端到端深度学习的自动脑 MRI 运动伪影检测与基于图像质量指标的传统机器学习训练同样有效。

Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics.

机构信息

Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary.

Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary.

出版信息

Med Image Anal. 2023 Aug;88:102850. doi: 10.1016/j.media.2023.102850. Epub 2023 May 23.

Abstract

Head motion artifacts in magnetic resonance imaging (MRI) are an important confounding factor concerning brain research as well as clinical practice. For this reason, several machine learning-based methods have been developed for the automatic quality control of structural MRI scans. Deep learning offers a promising solution to this problem, however, given its data-hungry nature and the scarcity of expert-annotated datasets, its advantage over traditional machine learning methods in identifying motion-corrupted brain scans is yet to be determined. In the present study, we investigated the relative advantage of the two methods in structural MRI quality control. To this end, we collected publicly available T1-weighted images and scanned subjects in our own lab under conventional and active head motion conditions. The quality of the images was rated by a team of radiologists from the point of view of clinical diagnostic use. We present a relatively simple, lightweight 3D convolutional neural network trained in an end-to-end manner that achieved a test set (N = 411) balanced accuracy of 94.41% in classifying brain scans into clinically usable or unusable categories. A support vector machine trained on image quality metrics achieved a balanced accuracy of 88.44% on the same test set. Statistical comparison of the two models yielded no significant difference in terms of confusion matrices, error rates, or receiver operating characteristic curves. Our results suggest that these machine learning methods are similarly effective in identifying severe motion artifacts in brain MRI scans, and underline the efficacy of end-to-end deep learning-based systems in brain MRI quality control, allowing the rapid evaluation of diagnostic utility without the need for elaborate image pre-processing.

摘要

头部运动伪影是磁共振成像(MRI)中的一个重要混杂因素,无论是在脑科学研究还是临床实践中都是如此。因此,已经开发出了几种基于机器学习的方法,用于对结构 MRI 扫描进行自动质量控制。深度学习为解决这个问题提供了一种很有前途的方法,然而,由于其数据需求大,以及专家注释数据集的稀缺性,其在识别运动伪影脑扫描方面相对于传统机器学习方法的优势尚未确定。在本研究中,我们研究了这两种方法在结构 MRI 质量控制中的相对优势。为此,我们收集了公开的 T1 加权图像,并在我们自己的实验室中在常规和主动头部运动条件下对受试者进行了扫描。图像的质量由来自放射科医生团队从临床诊断使用的角度进行评估。我们提出了一种相对简单、轻量级的 3D 卷积神经网络,它以端到端的方式进行训练,在将脑扫描分为临床可用或不可用类别时,在测试集(N=411)上的平衡准确率达到了 94.41%。基于图像质量指标训练的支持向量机在相同的测试集上达到了 88.44%的平衡准确率。对这两个模型的统计比较在混淆矩阵、错误率或接收者操作特征曲线方面没有显示出显著差异。我们的结果表明,这些机器学习方法在识别脑 MRI 扫描中的严重运动伪影方面同样有效,并强调了基于端到端深度学习的系统在脑 MRI 质量控制中的有效性,允许快速评估诊断效用,而无需进行精心的图像预处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验