Suppr超能文献

基于卷积神经网络的 T1 加权脑磁共振图像运动伪影检测。

Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks.

机构信息

Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany.

Philips Healthcare, Aachen, Germany.

出版信息

Int J Neural Syst. 2024 Oct;34(10):2450052. doi: 10.1142/S0129065724500527. Epub 2024 Jul 12.

Abstract

Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of - QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.

摘要

磁共振成像(MRI)的质量评估(QA)涵盖了多个因素,如噪声、对比度、均匀性和成像伪影。质量评估通常没有标准化,依赖于人员的专业知识和警惕性,这在大数据集的情况下尤其受到限制。基于卷积神经网络(CNNs)的机器学习是一种很有前途的方法,可以通过对 MR 图像进行自动检查来解决这些挑战。在这项研究中,提出了一种用于检测 T1 加权 MRI 中随机头部运动伪影(RHM)的 CNN,这是图像质量的一个方面。该方法采用两步法,首先识别出明显存在运动伪影的图像,然后评估更详细的三分类的可行性。所使用的数据集包含 420 个各向同性分辨率的 T1 加权全脑图像容积。人类专家将每个容积分配到三个伪影明显程度类别之一。结果表明,对于识别具有明显伪影负荷的图像,其识别准确率为 95%。添加一个中间类后,准确率保持在 76%。研究结果表明,基于 CNN 的方法具有很大的潜力,可以通过标记可能存在相关伪影的图像来提高大型数据集 QA 的效率,以便进行更仔细的检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验