RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan.
Genomics Research Center, Academia Sinica, Taipei, Taiwan.
Antiviral Res. 2023 Aug;216:105640. doi: 10.1016/j.antiviral.2023.105640. Epub 2023 May 30.
Influenza epidemics and pandemics caused by newly emerging virus strains highlight an urgent need to develop a universal vaccine against viruses. Previously, a monoglycosylated X-181 vaccine demonstrated that the HA possessing a single N-acetylglucosamine at each N-glycosylation site is superior to confer broader protection in mice than conventional vaccines. However, the greatest challenge in conducting clinical trials is the need to develop robust manufacturing processes capable of producing vaccines at the pilot scale with the desired stability, potency, and efficacy. Whether the monoglycosylated virus vaccine platform can be applied to the new vaccine strain in a timely manner and whether the mass-produced vaccine has the proper immunogenicity to induce cross-protective immunity remains unclear. Here, we show that a pilot-scale manufacturing process produced a monoglycosylated A/Brisbane/02/2018(H1N1) virus vaccine (IVR-190) with a single glycan at each glycosylation site of HA and NA. Compared with the fully glycosylated virus vaccine (IVR-190), the IVR-190 provided broader cross-protection in mice against a wide range of H1N1 variants. The enhanced antibody responses induced by IVR-190 immunization include higher hemagglutination-inhibition titers, higher neutralization activity, more anti-HA head domain, more anti-HA stem antibodies, higher neuraminidase activity inhibition titers, and notably, higher antibody-dependent cellular cytotoxicity. Additionally, the IVR-190 also induced a more balanced Th1/Th2 response and elicited broader splenic CD4 and CD8 T-cell responses than IVR-190. This study demonstrated that IVR-190 produced using a pilot-scale manufacturing process elicits comprehensive cross-strain immune responses that have great potential to substantially mitigate the need for yearly reformulation of strain-specific inactivated vaccines.
流感疫情和新出现病毒株引起的大流行突出表明,迫切需要开发针对病毒的通用疫苗。以前,单糖基化 X-181 疫苗表明,在每个 N-糖基化位点上仅具有单个 N-乙酰葡萄糖胺的 HA 比传统疫苗更能在小鼠中提供更广泛的保护。然而,进行临床试验的最大挑战是需要开发强大的制造工艺,能够在中试规模上生产具有所需稳定性、效力和功效的疫苗。单糖基化病毒疫苗平台是否能够及时应用于新疫苗株,以及大规模生产的疫苗是否具有适当的免疫原性以诱导交叉保护免疫,目前尚不清楚。在这里,我们表明,中试规模制造工艺生产的单糖基化 A/Brisbane/02/2018(H1N1)病毒疫苗(IVR-190)在 HA 和 NA 的每个糖基化位点都具有单个聚糖。与完全糖基化的病毒疫苗(IVR-190)相比,IVR-190 在小鼠中提供了针对广泛的 H1N1 变体的更广泛的交叉保护。IVR-190 免疫诱导的增强抗体反应包括更高的血凝抑制滴度、更高的中和活性、更多的抗 HA 头部结构域抗体、更多的抗 HA 茎部抗体、更高的神经氨酸酶活性抑制滴度,值得注意的是,更高的抗体依赖性细胞毒性。此外,IVR-190 还诱导了更平衡的 Th1/Th2 反应,并引起了更广泛的脾脏 CD4 和 CD8 T 细胞反应,而 IVR-190 则没有。这项研究表明,使用中试规模制造工艺生产的 IVR-190 可引发全面的跨株免疫反应,具有极大的潜力大大减少对每年重新配制针对特定菌株的灭活疫苗的需求。