Suppr超能文献

mRNA 疫苗编码经计算优化的血凝素,可诱导针对 2018-2020 年期间分离的未来抗原漂移的 H1N1 和 H3N2 流感病毒的保护性抗体。

mRNA vaccines encoding computationally optimized hemagglutinin elicit protective antibodies against future antigenically drifted H1N1 and H3N2 influenza viruses isolated between 2018-2020.

机构信息

Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.

Department of Infectious Diseases, University of Georgia, Athens, GA, United States.

出版信息

Front Immunol. 2024 Mar 12;15:1334670. doi: 10.3389/fimmu.2024.1334670. eCollection 2024.

Abstract

BACKGROUND

The implementation of mRNA vaccines against COVID-19 has successfully validated the safety and efficacy of the platform, while at the same time revealing the potential for their applications against other infectious diseases. Traditional seasonal influenza vaccines often induce strain specific antibody responses that offer limited protection against antigenically drifted viruses, leading to reduced vaccine efficacy. Modern advances in viral surveillance and sequencing have led to the development of in-silico methodologies for generating computationally optimized broadly reactive antigens (COBRAs) to improve seasonal influenza vaccines.

METHODS

In this study, immunologically naïve mice were intramuscularly vaccinated with mRNA encoding H1 and H3 COBRA hemagglutinins (HA) or wild-type (WT) influenza HAs encapsulated in lipid nanoparticles (LNPs).

RESULTS

Mice vaccinated with H1 and H3 COBRA HA-encoding mRNA vaccines generated robust neutralizing serum antibody responses against more antigenically distinct contemporary and future drifted H1N1 and H3N2 influenza strains than those vaccinated with WT H1 and H3 HA-encoding mRNA vaccines. The H1 and H3 COBRA HA-encoding mRNA vaccines also prevented influenza illness, including severe disease in the mouse model against H1N1 and H3N2 viruses.

CONCLUSIONS

This study highlights the potential benefits of combining universal influenza antigen design technology with modern vaccine delivery platforms and exhibits how these vaccines can be advantageous over traditional WT vaccine antigens at eliciting superior protective antibody responses against a broader number of influenza virus isolates.

摘要

背景

mRNA 疫苗在 COVID-19 上的应用成功验证了该平台的安全性和有效性,同时也揭示了其在防治其他传染病方面的应用潜力。传统的季节性流感疫苗通常会诱导针对特定毒株的抗体反应,对抗原漂移的病毒提供的保护作用有限,导致疫苗效力降低。病毒监测和测序的现代进展已经推动了基于计算的优化广泛反应性抗原(COBRA)的生成方法学的发展,以改进季节性流感疫苗。

方法

在这项研究中,免疫原性未成熟的小鼠通过肌肉内接种编码 H1 和 H3 COBRA 血凝素(HA)或包裹在脂质纳米颗粒(LNP)中的野生型(WT)流感 HA 的 mRNA 进行疫苗接种。

结果

接种编码 H1 和 H3 COBRA HA 的 mRNA 疫苗的小鼠产生了针对更具抗原差异的当代和未来漂移的 H1N1 和 H3N2 流感株的强大中和血清抗体反应,优于接种 WT H1 和 H3 HA 编码的 mRNA 疫苗的小鼠。编码 H1 和 H3 COBRA HA 的 mRNA 疫苗还预防了流感疾病,包括在小鼠模型中针对 H1N1 和 H3N2 病毒的严重疾病。

结论

这项研究强调了将通用流感抗原设计技术与现代疫苗传递平台相结合的潜在益处,并展示了这些疫苗在诱导针对更广泛数量的流感病毒分离株的更优越的保护性抗体反应方面如何优于传统的 WT 疫苗抗原。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e457/10963417/78896c90ad9f/fimmu-15-1334670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验