Suppr超能文献

基于磁共振成像的黏液纤维肉瘤组织病理学分级的放射组学预测。

Prediction of histopathologic grades of myxofibrosarcoma with radiomics based on magnetic resonance imaging.

机构信息

Department of Radiology, Shantou Central Hospital, No. 114 Waima Road, Shantou, 515031, People's Republic of China.

Central Laboratory, Clinical Research Center, Shantou Central Hospital, No. 114 Waima Road, Shantou, 515031, People's Republic of China.

出版信息

J Cancer Res Clin Oncol. 2023 Sep;149(12):10169-10179. doi: 10.1007/s00432-023-04939-0. Epub 2023 Jun 2.

Abstract

PURPOSE

To develop a radiomics-based model from preoperative magnetic resonance imaging (MRI) for predicting the histopathological grades of myxofibrosarcoma.

METHODS

This retrospective study included 54 patients. The tumors were classified into high-grade and low-grade myxofibrosarcoma. The tumor size, signal intensity heterogeneity, margin, and surrounding tissue were evaluated on MRI. Using the least absolute shrinkage and selection operator (LASSO) algorithms, 1037 radiomics features were obtained from fat-suppressed T2-weighted images (T2WI), and a radiomics signature was established. Using multivariable logistic regression analysis, three models were built to predict the histopathologic grade of myxofibrosarcoma. A radiomics nomogram represents the integrative model. The three models' performance was evaluated using the receiver operating characteristics (ROC) and calibration curves.

RESULTS

The high-grade myxofibrosarcoma had greater depth (P = 0.027), more frequent heterogeneous signal intensity at T2WI (P = 0.015), and tail sign (P = 0.014) than the low-grade tumor. The area under curve (AUC) of these conventional MRI features models was 0.648, 0.656, and 0.668, respectively. Seven radiomic features were selected by LASSO to construct the radiomics signature model, with an AUC of 0.791. The AUC of the integrative model based on radiomics signature and conventional MRI features was 0.875. The integrative model's calibration curve and insignificant Hosmer-Lemeshow test statistic (P = 0.606) revealed good calibration.

CONCLUSION

An integrative model using radiomics signature and three conventional MRI features can preoperatively predict low- or high-grade myxofibrosarcoma.

摘要

目的

从术前磁共振成像(MRI)中建立基于放射组学的模型,以预测黏液纤维肉瘤的组织病理学分级。

方法

本回顾性研究纳入了 54 例患者。肿瘤分为高级别和低级别黏液纤维肉瘤。在 MRI 上评估肿瘤大小、信号强度异质性、边缘和周围组织。使用最小绝对收缩和选择算子(LASSO)算法,从脂肪抑制 T2 加权图像(T2WI)中获得 1037 个放射组学特征,并建立放射组学特征。使用多变量逻辑回归分析,建立三个模型来预测黏液纤维肉瘤的组织病理学分级。一个放射组学列线图代表综合模型。使用受试者工作特征(ROC)和校准曲线评估这三个模型的性能。

结果

高级别黏液纤维肉瘤的深度更大(P=0.027),T2WI 上信号强度不均匀的频率更高(P=0.015),并且出现尾征(P=0.014)的频率更高。这些常规 MRI 特征模型的曲线下面积(AUC)分别为 0.648、0.656 和 0.668。通过 LASSO 选择了 7 个放射组学特征来构建放射组学特征模型,AUC 为 0.791。基于放射组学特征和常规 MRI 特征的综合模型的 AUC 为 0.875。综合模型的校准曲线和不显著的 Hosmer-Lemeshow 检验统计量(P=0.606)表明其具有良好的校准度。

结论

一种使用放射组学特征和三个常规 MRI 特征的综合模型可以术前预测黏液纤维肉瘤的低级别或高级别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验