Sun Shougang, Qi Jiannan, Wang Shuguang, Wang Zhongwu, Hu Yongxu, Huang Yinan, Fu Yao, Wang Yanpeng, Du Haiyan, Hu Xiaoxia, Lei Yong, Chen Xiaosong, Li Liqiang, Hu Wenping
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China.
Analysis and testing center of Tianjin University, 300192, Tianjin, China.
Small. 2023 Sep;19(38):e2301421. doi: 10.1002/smll.202301421. Epub 2023 Jun 1.
Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm V s , showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.
有机半导体单晶(OSSCs)是研究有机半导体(OSCs)本征特性以及构建高性能有机场效应晶体管(OFETs)的理想材料。然而,目前尚无通用方法能快速制备出适用于各种有机半导体的厚度可控且均匀的单晶。在此,受多晶薄膜再结晶(一种自发的形态不稳定性现象)的启发,开发了一种空间限制再结晶(SCR)方法,通过施加纵向压力来调整有机半导体多晶薄膜中晶粒的生长方向,从而以良好控制的方式快速(甚至在几秒的时间尺度上)生长出厚度可控且均匀的有机半导体单晶。全面研究了包括生长时间、温度、纵向压力和厚度在内的生长参数之间的关系。值得注意的是,该方法适用于各种有机半导体,包括不溶性和可溶性小分子及聚合物,并且能够实现高质量的晶体阵列生长。通过同一批次制备的相应50个二萘并[2,3 - b:2″,3″ - f]噻吩并[3,2 - b]噻吩(DNTT)单晶共面有机场效应晶体管的迁移率为4.1±0.4 cm² V⁻¹ s⁻¹,显示出优异的均匀性。该方法在生长速率、通用性、厚度可控性和均匀性方面的整体性能优于已报道的方法,表明其在有机电子和光电器件中具有广阔的应用前景。