Suppr超能文献

糖基水解酶的连续作用分子机制体现了催化的实用主义。

Molecular mechanisms of processive glycoside hydrolases underline catalytic pragmatism.

机构信息

School of Agriculture, Food and Wine, and Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Glen Osmond, South Australia 5064, Australia.

School of Life Science, Huaiyin Normal University, Huai'an 223300, China.

出版信息

Biochem Soc Trans. 2023 Jun 28;51(3):1387-1403. doi: 10.1042/BST20230136.

Abstract

Processive and distributive catalysis defines the conversion continuum, thus underpinning the transformation of oligo- and polymeric substrates by enzymes. Distributive catalysis follows an association-transformation-dissociation pattern during the formation of enzyme-reactant complexes, whereas during processive catalysis, enzymes partner with substrates and complete multiple catalytic events before dissociation from an enzyme-substrate complex. Here, we focus on processive catalysis in glycoside hydrolases (GHs), which ensures efficient conversions of substrates with high precision, and has the advantage over distributive catalysis in efficiency. The work presented here examines a recent discovery of substrate-product-assisted processive catalysis in the GH3 family enzymes with enclosed pocket-shaped active sites. We detail how GH3 β-d-glucan glucohydrolases exploit a transiently formed lateral pocket for product displacement and reactants sliding (or translocation motion) through the catalytic site without dissociation, including movements during nanoscale binding/unbinding and sliding. The phylogenetic tree of putative 550 Archaean, bacterial, fungal, Viridiplantae, and Metazoan GH3 entries resolved seven lineages that corresponded to major substrate specificity groups. This analysis indicates that two tryptophan residues in plant β-d-glucan glucohydrolases that delineate the catalytic pocket, and infer broad specificity, high catalytic efficiency, and substrate-product-assisted processivity, have evolved through a complex evolutionary process, including horizontal transfer and neo-functionalisation. We conclude that the definition of thermodynamic and mechano-structural properties of processive enzymes is fundamentally important for theoretical and practical applications in bioengineering applicable in various biotechnologies.

摘要

连续和分布催化定义了转化连续体,从而为酶对寡聚和聚合底物的转化提供了基础。在酶-反应物复合物形成过程中,分布催化遵循缔合-转化-解离模式,而在连续催化过程中,酶与底物结合,并在从酶-底物复合物解离之前完成多个催化事件。在这里,我们重点关注糖苷水解酶(GHs)中的连续催化,它确保了高效、高精度地转化底物,并且在效率方面优于分布催化。本文介绍了最近在具有封闭口袋状活性位点的 GH3 家族酶中发现的底物-产物辅助连续催化的研究成果。我们详细介绍了 GH3β-d-葡聚糖葡萄糖水解酶如何利用瞬时形成的侧袋进行产物置换和反应物滑动(或易位运动)穿过催化位点而不发生解离,包括在纳米级结合/解吸和滑动过程中的运动。假定的 550 个古菌、细菌、真菌、Viridiplantae 和后生动物 GH3 条目系统发育树解析出 7 个谱系,它们对应于主要的底物特异性组。该分析表明,植物β-d-葡聚糖葡萄糖水解酶中两个界定催化口袋的色氨酸残基,推断具有广泛的特异性、高催化效率和底物-产物辅助的连续性,是通过复杂的进化过程进化而来的,包括水平转移和新功能化。我们得出结论,连续酶的热力学和力学结构特性的定义对于生物工程在各种生物技术中的理论和实际应用是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/585a/10317168/e52b36da797e/BST-51-1387-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验