Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
Neuroimage. 2023 Aug 1;276:120213. doi: 10.1016/j.neuroimage.2023.120213. Epub 2023 Jun 1.
Predictions of task-based functional magnetic resonance imaging (fMRI) from task-free resting-state (rs) fMRI have gained popularity over the past decade. This method holds a great promise for studying individual variability in brain function without the need to perform highly demanding tasks. However, in order to be broadly used, prediction models must prove to generalize beyond the dataset they were trained on. In this work, we test the generalizability of prediction of task-fMRI from rs-fMRI across sites, MRI vendors and age-groups. Moreover, we investigate the data requirements for successful prediction. We use the Human Connectome Project (HCP) dataset to explore how different combinations of training sample sizes and number of fMRI datapoints affect prediction success in various cognitive tasks. We then apply models trained on HCP data to predict brain activations in data from a different site, a different MRI vendor (Phillips vs. Siemens scanners) and a different age group (children from the HCP-development project). We demonstrate that, depending on the task, a training set of approximately 20 participants with 100 fMRI timepoints each yields the largest gain in model performance. Nevertheless, further increasing sample size and number of timepoints results in significantly improved predictions, until reaching approximately 450-600 training participants and 800-1000 timepoints. Overall, the number of fMRI timepoints influences prediction success more than the sample size. We further show that models trained on adequate amounts of data successfully generalize across sites, vendors and age groups and provide predictions that are both accurate and individual-specific. These findings suggest that large-scale publicly available datasets may be utilized to study brain function in smaller, unique samples.
在过去的十年中,基于任务的功能磁共振成像 (fMRI) 预测从无任务静息状态 (rs) fMRI 中得到了广泛的关注。这种方法在不需要执行高要求任务的情况下,对于研究大脑功能的个体变异性具有很大的潜力。然而,为了广泛应用,预测模型必须证明它们可以在训练数据之外的其他数据集上进行推广。在这项工作中,我们测试了基于 rs-fMRI 的任务 fMRI 预测在不同地点、不同 MRI 供应商和不同年龄组之间的可推广性。此外,我们还研究了成功预测所需的数据要求。我们使用人类连接组计划 (HCP) 数据集来探索不同的训练样本大小和 fMRI 数据点数组合如何影响各种认知任务的预测成功率。然后,我们将在 HCP 数据上训练的模型应用于预测来自不同地点、不同 MRI 供应商(飞利浦与西门子扫描仪)和不同年龄组(HCP 发展项目中的儿童)的数据中的大脑激活。我们证明,取决于任务,大约有 20 名参与者,每人 100 个 fMRI 时间点的训练集可以使模型性能得到最大提高。尽管如此,进一步增加样本量和时间点会显著提高预测结果,直到达到大约 450-600 名训练参与者和 800-1000 个时间点。总的来说,fMRI 时间点的数量比样本量对预测成功率的影响更大。我们还进一步表明,在足够数量的数据上训练的模型可以成功地在不同地点、供应商和年龄组之间进行推广,并提供准确且个体特异性的预测。这些发现表明,大型公共可用数据集可用于研究较小、独特样本中的大脑功能。