基于 CT 图像的深度卷积神经网络自动分割和强直性脊柱炎相关骶髂关节炎分级诊断。

Automatic Image Segmentation and Grading Diagnosis of Sacroiliitis Associated with AS Using a Deep Convolutional Neural Network on CT Images.

机构信息

Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.

Department of Radiology, Massachusetts General Hospitaland, Harvard Medical School , 25 New Chardon Street 400C, Boston, MA, 02114, USA.

出版信息

J Digit Imaging. 2023 Oct;36(5):2025-2034. doi: 10.1007/s10278-023-00858-1. Epub 2023 Jun 2.

Abstract

Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes inflammatory low back pain and may even limit activity. The grading diagnosis of sacroiliitis on imaging plays a central role in diagnosing AS. However, the grading diagnosis of sacroiliitis on computed tomography (CT) images is viewer-dependent and may vary between radiologists and medical institutions. In this study, we aimed to develop a fully automatic method to segment sacroiliac joint (SIJ) and further grading diagnose sacroiliitis associated with AS on CT. We studied 435 CT examinations from patients with AS and control at two hospitals. No-new-UNet (nnU-Net) was used to segment the SIJ, and a 3D convolutional neural network (CNN) was used to grade sacroiliitis with a three-class method, using the grading results of three veteran musculoskeletal radiologists as the ground truth. We defined grades 0-I as class 0, grade II as class 1, and grades III-IV as class 2 according to modified New York criteria. nnU-Net segmentation of SIJ achieved Dice, Jaccard, and relative volume difference (RVD) coefficients of 0.915, 0.851, and 0.040 with the validation set, respectively, and 0.889, 0.812, and 0.098 with the test set, respectively. The areas under the curves (AUCs) of classes 0, 1, and 2 using the 3D CNN were 0.91, 0.80, and 0.96 with the validation set, respectively, and 0.94, 0.82, and 0.93 with the test set, respectively. 3D CNN was superior to the junior and senior radiologists in the grading of class 1 for the validation set and inferior to expert for the test set (P < 0.05). The fully automatic method constructed in this study based on a convolutional neural network could be used for SIJ segmentation and then accurately grading and diagnosis of sacroiliitis associated with AS on CT images, especially for class 0 and class 2. The method for class 1 was less effective but still more accurate than that of the senior radiologist.

摘要

强直性脊柱炎(AS)是一种慢性炎症性疾病,可引起炎症性下腰痛,甚至可能限制活动。影像学上的骶髂关节炎分级诊断在诊断 AS 中起着核心作用。然而,CT 图像上的骶髂关节炎分级诊断是依赖于观察者的,并且可能在放射科医生和医疗机构之间存在差异。在这项研究中,我们旨在开发一种全自动方法来分割骶髂关节(SIJ),并进一步对 CT 上与 AS 相关的骶髂关节炎进行分级诊断。我们研究了来自两家医院的 435 例 AS 患者和对照组的 CT 检查。使用 No-new-UNet(nnU-Net)分割 SIJ,使用 3D 卷积神经网络(CNN)对骶髂关节炎进行分级,使用三位资深肌肉骨骼放射科医生的分级结果作为金标准。我们根据改良纽约标准,将 0-1 级定义为 0 级,将 2 级定义为 1 级,将 3-4 级定义为 2 级。nnU-Net 分割 SIJ 在验证集上的 Dice、Jaccard 和相对体积差异(RVD)系数分别为 0.915、0.851 和 0.040,在测试集上分别为 0.889、0.812 和 0.098。使用 3D CNN 的 0、1 和 2 类的曲线下面积(AUC)在验证集上分别为 0.91、0.80 和 0.96,在测试集上分别为 0.94、0.82 和 0.93。3D CNN 在验证集上对 1 级的分级优于初级和高级放射科医生,而在测试集上则不如专家(P<0.05)。本研究基于卷积神经网络构建的全自动方法可用于 SIJ 分割,然后准确地对 CT 图像上与 AS 相关的骶髂关节炎进行分级和诊断,特别是对 0 级和 2 级。1 级的方法效果较差,但仍比高级放射科医生更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索