Suppr超能文献

深度学习在脊柱关节炎诊断成像中的作用:一项系统综述。

The role of deep learning in diagnostic imaging of spondyloarthropathies: a systematic review.

作者信息

Omar Mahmud, Watad Abdulla, McGonagle Dennis, Soffer Shelly, Glicksberg Benjamin S, Nadkarni Girish N, Klang Eyal

机构信息

Tel-Aviv University, Faculty of Medicine, Tel-Aviv, Israel.

Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.

出版信息

Eur Radiol. 2025 Jun;35(6):3661-3672. doi: 10.1007/s00330-024-11261-x. Epub 2024 Dec 10.

Abstract

AIM

Diagnostic imaging is an integral part of identifying spondyloarthropathies (SpA), yet the interpretation of these images can be challenging. This review evaluated the use of deep learning models to enhance the diagnostic accuracy of SpA imaging.

METHODS

Following PRISMA guidelines, we systematically searched major databases up to February 2024, focusing on studies that applied deep learning to SpA imaging. Performance metrics, model types, and diagnostic tasks were extracted and analyzed. Study quality was assessed using QUADAS-2.

RESULTS

We analyzed 21 studies employing deep learning in SpA imaging diagnosis across MRI, CT, and X-ray modalities. These models, particularly advanced CNNs and U-Nets, demonstrated high accuracy in diagnosing SpA, differentiating arthritis forms, and assessing disease progression. Performance metrics frequently surpassed traditional methods, with some models achieving AUCs up to 0.98 and matching expert radiologist performance.

CONCLUSION

This systematic review underscores the effectiveness of deep learning in SpA imaging diagnostics across MRI, CT, and X-ray modalities. The studies reviewed demonstrated high diagnostic accuracy. However, the presence of small sample sizes in some studies highlights the need for more extensive datasets and further prospective and external validation to enhance the generalizability of these AI models.

KEY POINTS

Question How can deep learning models improve diagnostic accuracy in imaging for spondyloarthropathies (SpA), addressing challenges in early detection and differentiation from other forms of arthritis? Findings Deep learning models, especially CNNs and U-Nets, showed high accuracy in SpA imaging across MRI, CT, and X-ray, often matching or surpassing expert radiologists. Clinical relevance Deep learning models can enhance diagnostic precision in SpA imaging, potentially reducing diagnostic delays and improving treatment decisions, but further validation on larger datasets is required for clinical integration.

摘要

目的

诊断成像在脊柱关节炎(SpA)的识别中起着不可或缺的作用,但对这些图像的解读可能具有挑战性。本综述评估了深度学习模型在提高SpA成像诊断准确性方面的应用。

方法

遵循PRISMA指南,我们系统检索了截至2024年2月的主要数据库,重点关注将深度学习应用于SpA成像的研究。提取并分析了性能指标、模型类型和诊断任务。使用QUADAS-2评估研究质量。

结果

我们分析了21项在SpA成像诊断中采用深度学习的研究,涉及MRI、CT和X线等模态。这些模型,尤其是先进的卷积神经网络(CNN)和U型网络(U-Nets),在诊断SpA、区分关节炎类型以及评估疾病进展方面表现出很高的准确性。性能指标经常超过传统方法,一些模型的曲线下面积(AUC)高达0.98,与专家放射科医生的表现相当。

结论

本系统综述强调了深度学习在SpA成像诊断中的有效性,涉及MRI、CT和X线等模态。所综述的研究显示出很高的诊断准确性。然而,一些研究中样本量较小,这凸显了需要更广泛的数据集以及进一步的前瞻性和外部验证,以提高这些人工智能模型的通用性。

关键点

问题深度学习模型如何提高脊柱关节炎(SpA)成像诊断的准确性,解决早期检测以及与其他形式关节炎鉴别的挑战?发现深度学习模型,尤其是CNN和U-Nets,在SpA的MRI、CT和X线成像中显示出很高的准确性,常常与专家放射科医生相当或超过他们。临床意义深度学习模型可以提高SpA成像的诊断精度,可能减少诊断延迟并改善治疗决策,但需要在更大的数据集上进行进一步验证以实现临床整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3acf/12081588/ceac9c4d126b/330_2024_11261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验