Suppr超能文献

用于通过双光子聚合实现高自由度4D形状重构的单层异质结交互式水凝胶。

Monolayer heterojunction interactive hydrogels for high-freedom 4D shape reconfiguration by two-photon polymerization.

作者信息

Tao Yufeng, Lu Chengchangfeng, Wang Xuejiao, Xin Zhiduo, Cao Xia, Ren Yunpeng

机构信息

Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, 212 013, China.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430 074, China.

出版信息

Int J Bioprint. 2023 Feb 3;9(3):678. doi: 10.18063/ijb.678. eCollection 2023.

Abstract

Mimicking natural botanical/zoological systems has revolutionarily inspired four-dimensional (4D) hydrogel robotics, interactive actuators/machines, automatic biomedical devices, and self-adaptive photonics. The controllable high-freedom shape reconfiguration holds the key to satisfying the ever-increasing demands. However, miniaturized biocompatible 4D hydrogels remain rigorously stifled due to current approach/material limits. In this research, we spatiotemporally program micro/nano (μ/n) hydrogels through a heterojunction geometric strategy in femtosecond laser direct writing (fsLDW). Polyethylene incorporated N-isopropylacrylamide as programmable interactive materials here. Dynamic chiral torsion, site-specific mutation, anisotropic deformation, selective structural coloration of hydrogel nanowire, and spontaneous self-repairing as reusable μ/n robotics were identified. Hydrogel-materialized monolayer nanowires operate as the most fundamental block at nanometric accuracy to promise high freedom reconfiguration and high force-to-weight ratio/bending curvature under tight topological control. Taking use of this biomimetic fsLDW, we spatiotemporally constructed several in/out-plane self-driven hydrogel grippers, diverse 2D-to-3D transforming from the same monolayer shape, responsive photonic crystal, and self-clenched fists at μ/n scale. Predictably, the geometry-modulable hydrogels would open new access to massively-reproducible robotics, actuators/sensors for microenvironments, or lab-on-chip devices.

摘要

模仿天然植物/动物系统为四维(4D)水凝胶机器人技术、交互式致动器/机器、自动生物医学设备和自适应光子学带来了革命性的启发。可控的高自由度形状重构是满足不断增长的需求的关键。然而,由于当前方法/材料的限制,小型化的生物相容性4D水凝胶仍然受到严格的限制。在本研究中,我们通过飞秒激光直写(fsLDW)中的异质结几何策略对微/纳米(μ/n)水凝胶进行时空编程。此处将聚乙烯掺入N-异丙基丙烯酰胺作为可编程的交互式材料。我们确定了动态手性扭转、位点特异性突变、各向异性变形、水凝胶纳米线的选择性结构着色以及作为可重复使用的μ/n机器人的自发自我修复。水凝胶化的单层纳米线在纳米精度下作为最基本的构建块运行,以保证在严格的拓扑控制下实现高自由度重构和高力重比/弯曲曲率。利用这种仿生fsLDW,我们时空构建了几个平面内/外自驱动水凝胶夹具、从相同单层形状进行的多种二维到三维转换、响应式光子晶体以及μ/n尺度的自握紧拳头。可以预见,几何形状可调节的水凝胶将为大规模可复制机器人技术、用于微环境的致动器/传感器或芯片实验室设备开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52af/10236484/5de1f5255df6/IJB-9-3-678-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验