Suppr超能文献

正常和异常甲基转移酶活性为动态霉素 A 生物合成的最后步骤提供了见解。

Normal and Aberrant Methyltransferase Activities Give Insights into the Final Steps of Dynemicin A Biosynthesis.

机构信息

Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States.

出版信息

J Am Chem Soc. 2023 Jun 14;145(23):12935-12947. doi: 10.1021/jacs.3c04393. Epub 2023 Jun 5.

Abstract

The naturally occurring enediynes are notable for their complex structures, potent DNA cleaving ability, and emerging usefulness in cancer chemotherapy. They can be classified into three distinct structural families, but all are thought to originate from a common linear C-heptaene. Dynemicin A (DYN) is the paradigm member of anthraquinone-fused enediynes, one of the three main classes and exceptional among them for derivation of both its enediyne and anthraquinone portions from this same early biosynthetic building block. Evidence is growing about how two structurally dissimilar, but biosynthetically related, intermediates combine in two heterodimerization reactions to create a nitrogen-containing C-coupled product. We report here deletions of two genes that encode biosynthetic proteins that are annotated as -adenosylmethionine (SAM)-dependent methyltransferases. While one, DynO6, is indeed the required -methyltransferase implicated long ago in the first studies of DYN biosynthesis, the other, DynA5, functions in an unanticipated manner in the post-heterodimerization events that complete the biosynthesis of DYN. Despite its removal from the genome of , the Δ strain retains the ability to synthesize DYN, albeit in reduced titers, accompanied by two unusual co-metabolites. We link the appearance of these unexpected structures to a substantial and contradictory body of other recent experimental data to advance a biogenetic rationale for the downstream steps that lead to the final formation of DYN. A sequence of product-forming transformations that is in line with new and existing experimental results is proposed and supported by a model reaction that also encompasses the formation of the crucial epoxide essential for the activation of DYN for DNA cleavage.

摘要

天然存在的烯二炔以其复杂的结构、强大的 DNA 切割能力以及在癌症化疗中的新兴用途而引人注目。它们可以分为三个不同的结构家族,但都被认为起源于共同的线性 C-七烯。 dynemicin A (DYN) 是蒽醌融合烯二炔的典范成员,是三个主要类别之一,与其他类别不同的是,它的烯二炔和蒽醌部分都来自于同一早期生物合成构建块。越来越多的证据表明,两种结构上不相似但生物合成上相关的中间体如何在两个杂二聚化反应中结合,形成一个含氮的 C 键合产物。我们在这里报告了两个基因的缺失,这些基因编码的生物合成蛋白被注释为依赖于 - 腺苷甲硫氨酸 (SAM) 的甲基转移酶。虽然其中一个, DynO6 ,确实是在 DYN 生物合成的早期研究中涉及的第一个甲基转移酶,但另一个, DynA5 ,在完成 DYN 生物合成的杂二聚化反应后以一种意想不到的方式发挥作用。尽管从 的基因组中删除了 DynA5 ,但 Δ 菌株仍然保留了合成 DYN 的能力,尽管产量较低,同时还伴随着两种不寻常的共代谢物。我们将这些意外结构的出现与大量其他最近的实验数据联系起来,为导致 DYN 最终形成的下游步骤提供生物发生的基本原理。提出了一个与新的和现有的实验结果一致的产物形成转化序列,并通过一个模型反应得到支持,该反应还包括形成对 DYN 用于 DNA 切割的激活至关重要的关键环氧化物。

相似文献

3
Characterization of an Anthracene Intermediate in Dynemicin Biosynthesis.动态霉素生物合成中蒽醌中间体的表征。
Angew Chem Int Ed Engl. 2018 May 14;57(20):5650-5654. doi: 10.1002/anie.201802036. Epub 2018 Mar 24.

本文引用的文献

4
Methyltransferases: Functions and Applications.甲基转移酶:功能与应用。
Chembiochem. 2022 Sep 16;23(18):e202200212. doi: 10.1002/cbic.202200212. Epub 2022 Jul 5.
7
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验