School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China.
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
Chaos. 2023 Jun 1;33(6). doi: 10.1063/5.0140579.
Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth-death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67% when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23% and 94.76%, respectively, indicating that our proposed model is useful for the analysis of EEG signals.
癫痫是一种广泛存在的神经系统疾病,其反复发作和突发性使得自动检测癫痫发作成为当务之急。为此,本文通过图论对脑电图(EEG)信号进行拓扑数据分析(TDA),以探索其中包含的潜在脑活动信息。通过我们的创新方法,首先将癫痫 EEG 的时间序列映射到双向加权可见性图(BWVG)中,与之前存在的结构相比,该图更全面地反映了信号的特征。传统的图论测量通常是局部的,主要考虑顶点或边的差异或相关性,而拓扑数据分析的基本组成部分——持久同调(PH)则通过量化图的拓扑结构和分析这些拓扑性质随尺度变化的演化,提供了一种替代的思考方式。因此,我们对 BWVG 进行 PH 分析,然后获得同调群的持久性和生死指标,以反映 EEG 信号映射图的拓扑结构,并揭示脑动力学的差异。此外,我们采用神经网络(NN)自动检测癫痫信号,并在区分癫痫、无癫痫和健康受试者的三组不同 EEG 信号时成功实现了 99.67%的分类准确率。此外,为了适应多导联,我们提出了一种包含图结构的分类器,用于区分癫痫和无癫痫的 EEG 信号。分类器中使用的两个受试者的分类准确率分别高达 99.23%和 94.76%,表明我们提出的模型对 EEG 信号的分析是有用的。