Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Philips Research, Eindhoven, The Netherlands.
J Neurosci Methods. 2017 Oct 1;290:85-94. doi: 10.1016/j.jneumeth.2017.07.013. Epub 2017 Jul 19.
The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied.
A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed.
A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG.
A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD/h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD/h of 1.4s).
The proposed VGS-based features can help improve seizure detection for ID patients.
传统的时频域脑电图特征在智障(ID)癫痫人群中的癫痫检测性能有限。此外,脑电图发作模式对检测性能的影响研究较少。
单通道脑电图信号可以映射到可视性图(VGS)中,包括基本可视性图(VG)、水平可视性图(HVG)和差分可视性图(DVG)。这些图用于描述不同的脑电图发作模式。为了证明其在识别脑电图发作模式和检测全身性发作方面的有效性,分析了 29 名智障癫痫患者的一个脑电图通道的 615 小时脑电图记录。
通过使用 VGS 方法获得了具有区分能力的新的癫痫检测特征集。DVG 的度分布(DD)可以清楚地区分每个发作模式的脑电图。本文首次提出了 DVG 中的度熵和幂律度幂,它们在发作和非发作脑电图之间表现出显著差异。HVG 测量的连接结构可以比 VG 和 DVG 更好地区分发作脑电图和背景脑电图。
这里使用了基于频率分析的传统脑电图特征集作为基准特征集。使用支持向量机(SVM)分类器,结合我们从一个脑电图通道提取的基于 VGS 的建议特征集(敏感性为 38%,FD/h 为 1.4s)可以提高基准特征集的癫痫检测性能(敏感性为 24%,FD/h 为 1.8s)。
基于 VGS 的建议特征集有助于提高 ID 患者的癫痫检测性能。