Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
Max Planck Institute for Intelligent Systems, Tübingen, Germany.
Nat Biomed Eng. 2023 Aug;7(8):1014-1027. doi: 10.1038/s41551-023-01047-9. Epub 2023 Jun 5.
In oncology, intratumoural heterogeneity is closely linked with the efficacy of therapy, and can be partially characterized via tumour biopsies. Here we show that intratumoural heterogeneity can be characterized spatially via phenotype-specific, multi-view learning classifiers trained with data from dynamic positron emission tomography (PET) and multiparametric magnetic resonance imaging (MRI). Classifiers trained with PET-MRI data from mice with subcutaneous colon cancer quantified phenotypic changes resulting from an apoptosis-inducing targeted therapeutic and provided biologically relevant probability maps of tumour-tissue subtypes. When applied to retrospective PET-MRI data of patients with liver metastases from colorectal cancer, the trained classifiers characterized intratumoural tissue subregions in agreement with tumour histology. The spatial characterization of intratumoural heterogeneity in mice and patients via multimodal, multiparametric imaging aided by machine-learning may facilitate applications in precision oncology.
在肿瘤学中,肿瘤内异质性与治疗效果密切相关,可以通过肿瘤活检部分进行描述。在这里,我们通过利用来自动态正电子发射断层扫描(PET)和多参数磁共振成像(MRI)的数据训练具有表型特异性的多视图学习分类器,来展示可以通过空间方式对肿瘤内异质性进行描述。使用来自皮下结肠癌的 PET-MRI 数据训练的分类器,定量分析了靶向诱导细胞凋亡的治疗方法引起的表型变化,并提供了肿瘤组织亚型的生物学相关概率图。当将其应用于结直肠癌肝转移患者的回顾性 PET-MRI 数据时,经过训练的分类器可以根据肿瘤组织学来描述肿瘤内组织的亚区域。通过机器学习辅助的多模态、多参数成像对小鼠和患者的肿瘤内异质性进行空间描述,可能有助于精准肿瘤学的应用。