Suppr超能文献

梯度提升 DD-MLP 网络:一种基于近红外光谱的集成学习模型,用于在运动期间对脑卒中后运动障碍程度进行分类。

Gradient boosting DD-MLP Net: An ensemble learning model using near-infrared spectroscopy to classify after-stroke dyskinesia degree during exercise.

机构信息

School of Mechatronic Engineering and Automation, Foshan University, Foshan, China.

Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

出版信息

J Biophotonics. 2023 Sep;16(9):e202300029. doi: 10.1002/jbio.202300029. Epub 2023 Jun 15.

Abstract

This study aims to develop an automatic assessment of after-stroke dyskinesias degree by combining machine learning and near-infrared spectroscopy (NIRS). Thirty-five subjects were divided into five stages (healthy, patient: Brunnstrom stages 3, 4, 5, 6). NIRS was used to record the muscular hemodynamic responses from bilateral femoris (biceps brachii) muscles during passive and active upper (lower) limbs circular exercise. We used the D-S evidence theory to conduct feature information fusion and established a Gradient Boosting DD-MLP Net model, combining the dendrite network and multilayer perceptron, to realize automatic dyskinesias degree evaluation. Our model classified the upper limb dyskinesias with high accuracy: 98.91% under the passive mode and 98.69% under the active mode, and classified the lower limb dyskinesias with high accuracy: 99.45% and 99.63% under the passive and active modes, respectively. Our model combined with NIRS has great potential in monitoring the after-stroke dyskinesias degree and guiding rehabilitation training.

摘要

本研究旨在通过结合机器学习和近红外光谱(NIRS)来开发一种自动评估中风后运动障碍程度的方法。35 名受试者被分为五个阶段(健康、患者:Brunnstrom 阶段 3、4、5、6)。NIRS 用于记录双侧股四头肌(肱二头肌)肌肉在被动和主动上肢(下肢)环形运动期间的肌肉血液动力学反应。我们使用 D-S 证据理论进行特征信息融合,并建立了一个梯度提升 DD-MLP 网络模型,结合树突网络和多层感知器,实现自动运动障碍程度评估。我们的模型对上肢运动障碍的分类具有很高的准确性:被动模式下为 98.91%,主动模式下为 98.69%;对下肢运动障碍的分类也具有很高的准确性:被动模式下为 99.45%,主动模式下为 99.63%。我们的模型与 NIRS 结合,在监测中风后运动障碍程度和指导康复训练方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验