School of Mechatronic Engineering and Automation, Foshan University, Foshan, China.
Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
J Biophotonics. 2023 Sep;16(9):e202300029. doi: 10.1002/jbio.202300029. Epub 2023 Jun 15.
This study aims to develop an automatic assessment of after-stroke dyskinesias degree by combining machine learning and near-infrared spectroscopy (NIRS). Thirty-five subjects were divided into five stages (healthy, patient: Brunnstrom stages 3, 4, 5, 6). NIRS was used to record the muscular hemodynamic responses from bilateral femoris (biceps brachii) muscles during passive and active upper (lower) limbs circular exercise. We used the D-S evidence theory to conduct feature information fusion and established a Gradient Boosting DD-MLP Net model, combining the dendrite network and multilayer perceptron, to realize automatic dyskinesias degree evaluation. Our model classified the upper limb dyskinesias with high accuracy: 98.91% under the passive mode and 98.69% under the active mode, and classified the lower limb dyskinesias with high accuracy: 99.45% and 99.63% under the passive and active modes, respectively. Our model combined with NIRS has great potential in monitoring the after-stroke dyskinesias degree and guiding rehabilitation training.
本研究旨在通过结合机器学习和近红外光谱(NIRS)来开发一种自动评估中风后运动障碍程度的方法。35 名受试者被分为五个阶段(健康、患者:Brunnstrom 阶段 3、4、5、6)。NIRS 用于记录双侧股四头肌(肱二头肌)肌肉在被动和主动上肢(下肢)环形运动期间的肌肉血液动力学反应。我们使用 D-S 证据理论进行特征信息融合,并建立了一个梯度提升 DD-MLP 网络模型,结合树突网络和多层感知器,实现自动运动障碍程度评估。我们的模型对上肢运动障碍的分类具有很高的准确性:被动模式下为 98.91%,主动模式下为 98.69%;对下肢运动障碍的分类也具有很高的准确性:被动模式下为 99.45%,主动模式下为 99.63%。我们的模型与 NIRS 结合,在监测中风后运动障碍程度和指导康复训练方面具有很大的潜力。