Hornstein Silvan, Zantvoort Kirsten, Lueken Ulrike, Funk Burkhardt, Hilbert Kevin
Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
Institute of Information Systems, Leuphana University, Lueneburg, Germany.
Front Digit Health. 2023 May 22;5:1170002. doi: 10.3389/fdgth.2023.1170002. eCollection 2023.
Personalization is a much-discussed approach to improve adherence and outcomes for Digital Mental Health interventions (DMHIs). Yet, major questions remain open, such as (1) what personalization is, (2) how prevalent it is in practice, and (3) what benefits it truly has.
We address this gap by performing a systematic literature review identifying all empirical studies on DMHIs targeting depressive symptoms in adults from 2015 to September 2022. The search in Pubmed, SCOPUS and Psycinfo led to the inclusion of 138 articles, describing 94 distinct DMHIs provided to an overall sample of approximately 24,300 individuals.
Our investigation results in the conceptualization of personalization as purposefully designed variation between individuals in an intervention's therapeutic elements or its structure. We propose to further differentiate personalization by what is personalized (i.e., intervention content, content order, level of guidance or communication) and the underlying mechanism [i.e., user choice, provider choice, decision rules, and machine-learning (ML) based approaches]. Applying this concept, we identified personalization in 66% of the interventions for depressive symptoms, with personalized intervention content (32% of interventions) and communication with the user (30%) being particularly popular. Personalization via decision rules (48%) and user choice (36%) were the most used mechanisms, while the utilization of ML was rare (3%). Two-thirds of personalized interventions only tailored one dimension of the intervention.
We conclude that future interventions could provide even more personalized experiences and especially benefit from using ML models. Finally, empirical evidence for personalization was scarce and inconclusive, making further evidence for the benefits of personalization highly needed.
Identifier: CRD42022357408.
个性化是一种备受讨论的方法,旨在改善数字心理健康干预措施(DMHIs)的依从性和效果。然而,一些主要问题仍未得到解答,例如:(1)什么是个性化;(2)在实践中它的普遍程度如何;(3)它真正带来了哪些益处。
我们通过进行系统的文献综述来填补这一空白,该综述确定了2015年至2022年9月期间所有针对成年人抑郁症状的DMHIs实证研究。在PubMed、SCOPUS和PsycInfo数据库中进行检索后,共纳入138篇文章,描述了为约24,300名个体的总体样本提供的94种不同的DMHIs。
我们的调查结果将个性化概念化为干预措施的治疗要素或其结构中个体之间有目的设计的差异。我们建议根据个性化的内容(即干预内容、内容顺序、指导或沟通水平)和潜在机制[即用户选择、提供者选择、决策规则和基于机器学习(ML)的方法]进一步区分个性化。应用这一概念,我们在66%的抑郁症状干预措施中发现了个性化,其中个性化干预内容(占干预措施的32%)和与用户的沟通(30%)特别普遍。通过决策规则(48%)和用户选择(36%)进行个性化是最常用的机制,而ML的应用很少(3%)。三分之二的个性化干预措施仅对干预的一个维度进行了调整。
我们得出结论,未来的干预措施可以提供更加个性化体验,尤其可以从使用ML模型中受益。最后,个性化的实证证据稀缺且尚无定论,因此迫切需要更多关于个性化益处的证据。
标识符:CRD42022357408