Zantvoort Kirsten, Matthiesen Jennifer J, Bjurner Pontus, Bendix Marie, Brefeld Ulf, Funk Burkhardt, Kaldo Viktor
Institute of Information Systems, Leuphana University, Lüneburg, Germany.
Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Sweden.
Internet Interv. 2025 Apr 9;40:100828. doi: 10.1016/j.invent.2025.100828. eCollection 2025 Jun.
With the impetus of Digital Mental Health Interventions (DMHIs), complex data can be leveraged to improve and personalize mental health care. However, most approaches rely on a very limited number of often costly features. Computer mouse trajectories can be unobtrusively and cost-efficiently gathered and seamlessly integrated into current baseline processes. Empirical evidence suggests that mouse movements hold information on user motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this paper discusses how to collect and process mouse trajectory data on questionnaires in DMHIs. Covering different complexity levels, we combine hand-crafted features with non-sequential machine learning models, as well as spatiotemporal raw mouse data with state-of-the-art sequential neural networks. The data processing pipeline for the latter includes task-specific pre-processing to convert the variable length trajectories into a single prediction per user. As a feasibility study, we collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. While the hand-crafted features slightly improve baseline predictions, the spatiotemporal models underperform. However, considering our small data set size, we propose more research to investigate the potential value of this novel and promising data type and provide the necessary steps and open-source code to do so.
在数字心理健康干预(DMHIs)的推动下,可以利用复杂数据来改善心理健康护理并实现个性化。然而,大多数方法依赖于数量非常有限且通常成本高昂的特征。计算机鼠标轨迹可以在不引人注意且成本效益高的情况下收集,并无缝集成到当前的基线流程中。实证证据表明,鼠标移动包含有关用户动机和注意力的信息,而这两个有价值的方面在大规模测量时很难做到。此外,鼠标轨迹已经可以在治疗前问卷上收集,这使其成为用于早期预测以指导治疗分配的有前途的候选对象。因此,本文讨论了如何在DMHIs的问卷上收集和处理鼠标轨迹数据。涵盖不同的复杂度级别,我们将手工制作的特征与非顺序机器学习模型相结合,以及将时空原始鼠标数据与最先进的顺序神经网络相结合。后者的数据处理管道包括特定任务的预处理,以将可变长度的轨迹转换为每个用户的单个预测。作为一项可行性研究,我们从183名填写干预前抑郁问卷的患者那里收集了鼠标轨迹数据。虽然手工制作的特征略微改善了基线预测,但时空模型表现不佳。然而,考虑到我们的数据集规模较小,我们建议进行更多研究以调查这种新颖且有前途的数据类型的潜在价值,并提供这样做的必要步骤和开源代码。