Olmsted Zachary T, Paredes-Espinosa Maria Belen, Paluh Janet L
State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA.
University of California Los Angeles, Ronald Reagan UCLA Medical Center, Department of Neurosurgery, Los Angeles, CA, USA.
Methods Mol Biol. 2024;2767:135-159. doi: 10.1007/7651_2023_491.
Trunk-biased human gastruloids provide the ability to couple developmentally relevant spinal neurogenesis and organ morphogenesis via spatiotemporal self-organization events from derivatives of the three germ layers. The multi-lineage nature of gastruloids provides the full complexity of regulatory signaling cues that surpasses directed organoids and lays the foundation for an ex vivo self-evolving system. Here we detail two distinct protocols for trunk-biased gastruloids from an elongated, polarized structure with coordinated organ-specific neural patterning. Following an induction phase to caudalize iPSCs to trunk phenotype, divergent features of organogenesis and end-organ innervation yield separate models of enteric and cardiac nervous system formation. Both protocols are permissive to multi-lineage development and allow the study of neural integration events within a native, embryo-like context. We discuss the customizability of human gastruloids and the optimization of initial and extended conditions that maintain a permissive environment for multi-lineage differentiation and integration.
躯干偏向性人类原肠胚样结构能够通过三个胚层衍生物的时空自组织事件,将与发育相关的脊髓神经发生和器官形态发生联系起来。原肠胚样结构的多谱系性质提供了超越定向类器官的完整复杂调控信号线索,为体外自我进化系统奠定了基础。在这里,我们详细介绍了两种从具有协调器官特异性神经模式的细长极化结构中生成躯干偏向性原肠胚样结构的不同方案。在将诱导多能干细胞(iPSC)尾化至躯干表型的诱导阶段之后,器官发生和终末器官神经支配的不同特征产生了肠道和心脏神经系统形成的独立模型。这两种方案都允许多谱系发育,并允许在天然的、胚胎样环境中研究神经整合事件。我们讨论了人类原肠胚样结构的可定制性以及初始和扩展条件的优化,这些条件为多谱系分化和整合维持了一个宽松的环境。