Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA.
Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
Nucleic Acids Res. 2024 Mar 21;52(5):2609-2624. doi: 10.1093/nar/gkad1215.
The SARS-CoV-2 Nucleocapsid (N) protein is responsible for condensation of the viral genome. Characterizing the mechanisms controlling nucleic acid binding is a key step in understanding how condensation is realized. Here, we focus on the role of the RNA binding domain (RBD) and its flanking disordered N-terminal domain (NTD) tail, using single-molecule Förster Resonance Energy Transfer and coarse-grained simulations. We quantified contact site size and binding affinity for nucleic acids and concomitant conformational changes occurring in the disordered region. We found that the disordered NTD increases the affinity of the RBD for RNA by about 50-fold. Binding of both nonspecific and specific RNA results in a modulation of the tail configurations, which respond in an RNA length-dependent manner. Not only does the disordered NTD increase affinity for RNA, but mutations that occur in the Omicron variant modulate the interactions, indicating a functional role of the disordered tail. Finally, we found that the NTD-RBD preferentially interacts with single-stranded RNA and that the resulting protein:RNA complexes are flexible and dynamic. We speculate that this mechanism of interaction enables the Nucleocapsid protein to search the viral genome for and bind to high-affinity motifs.
严重急性呼吸系统综合征冠状病毒 2 核衣壳(N)蛋白负责病毒基因组的浓缩。描述控制核酸结合的机制是理解如何实现浓缩的关键步骤。在这里,我们使用单分子Förster 共振能量转移和粗粒度模拟,重点研究 RNA 结合结构域(RBD)及其侧翼的无规卷曲 N 端结构域(NTD)尾巴的作用。我们定量了核酸的接触位点大小和结合亲和力,以及无规卷曲区发生的构象变化。我们发现,无规卷曲的 NTD 将 RBD 对 RNA 的亲和力提高了约 50 倍。非特异性和特异性 RNA 的结合导致尾巴构象的调制,这种调制以 RNA 长度依赖性的方式发生。无规卷曲的 NTD 不仅增加了对 RNA 的亲和力,而且在奥密克戎变体中发生的突变调节了相互作用,表明无规卷曲的尾巴具有功能作用。最后,我们发现 NTD-RBD 优先与单链 RNA 相互作用,并且形成的蛋白:RNA 复合物是灵活和动态的。我们推测这种相互作用机制使核衣壳蛋白能够搜索病毒基因组并与高亲和力基序结合。