Suppr超能文献

基于两批哥伦比亚数据序列的 COVID-19 感染和死亡的混合预测。

Hybrid prediction of infections and deaths due to COVID-19 in two Colombian data series.

机构信息

Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Quindío, Colombia.

出版信息

PLoS One. 2023 Jun 8;18(6):e0286643. doi: 10.1371/journal.pone.0286643. eCollection 2023.

Abstract

The prediction of the number of infected and dead due to COVID-19 has challenged scientists and government bodies, prompting them to formulate public policies to control the virus' spread and public health emergency worldwide. In this sense, we propose a hybrid method that combines the SIRD mathematical model, whose parameters are estimated via Bayesian inference with a seasonal ARIMA model. Our approach considers that notifications of both, infections and deaths are realizations of a time series process, so that components such as non-stationarity, trend, autocorrelation and/or stochastic seasonal patterns, among others, must be taken into account in the fitting of any mathematical model. The method is applied to data from two Colombian cities, and as hypothesized, the prediction outperforms the obtained with the fit of only the SIRD model. In addition, a simulation study is presented to assess the quality of the estimators of SIRD model in the inverse problem solution.

摘要

对 COVID-19 感染者和死亡人数的预测给科学家和政府机构带来了挑战,促使他们制定公共政策来控制病毒的传播和控制全球公共卫生紧急情况。从这个意义上说,我们提出了一种混合方法,该方法结合了 SIRD 数学模型,其参数通过贝叶斯推断进行估计,并结合了季节性 ARIMA 模型。我们的方法认为,感染和死亡的通知都是时间序列过程的实现,因此在拟合任何数学模型时,必须考虑非平稳性、趋势、自相关性和/或随机季节性模式等因素。该方法应用于来自两个哥伦比亚城市的数据,根据假设,预测结果优于仅拟合 SIRD 模型的结果。此外,还进行了一项模拟研究,以评估反问题解决方案中 SIRD 模型估计量的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10249875/59414fc756ff/pone.0286643.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验