Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Quindío, Colombia.
PLoS One. 2023 Jun 8;18(6):e0286643. doi: 10.1371/journal.pone.0286643. eCollection 2023.
The prediction of the number of infected and dead due to COVID-19 has challenged scientists and government bodies, prompting them to formulate public policies to control the virus' spread and public health emergency worldwide. In this sense, we propose a hybrid method that combines the SIRD mathematical model, whose parameters are estimated via Bayesian inference with a seasonal ARIMA model. Our approach considers that notifications of both, infections and deaths are realizations of a time series process, so that components such as non-stationarity, trend, autocorrelation and/or stochastic seasonal patterns, among others, must be taken into account in the fitting of any mathematical model. The method is applied to data from two Colombian cities, and as hypothesized, the prediction outperforms the obtained with the fit of only the SIRD model. In addition, a simulation study is presented to assess the quality of the estimators of SIRD model in the inverse problem solution.
对 COVID-19 感染者和死亡人数的预测给科学家和政府机构带来了挑战,促使他们制定公共政策来控制病毒的传播和控制全球公共卫生紧急情况。从这个意义上说,我们提出了一种混合方法,该方法结合了 SIRD 数学模型,其参数通过贝叶斯推断进行估计,并结合了季节性 ARIMA 模型。我们的方法认为,感染和死亡的通知都是时间序列过程的实现,因此在拟合任何数学模型时,必须考虑非平稳性、趋势、自相关性和/或随机季节性模式等因素。该方法应用于来自两个哥伦比亚城市的数据,根据假设,预测结果优于仅拟合 SIRD 模型的结果。此外,还进行了一项模拟研究,以评估反问题解决方案中 SIRD 模型估计量的质量。