Suppr超能文献

基于深度学习利用皮肤病变图像检测猴痘病毒

Deep learning based detection of monkeypox virus using skin lesion images.

作者信息

Nayak Tushar, Chadaga Krishnaraj, Sampathila Niranjana, Mayrose Hilda, Gokulkrishnan Nitila, Bairy G Muralidhar, Prabhu Srikanth, S Swathi K, Umakanth Shashikiran

机构信息

Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

出版信息

Med Nov Technol Devices. 2023 Jun;18:100243. doi: 10.1016/j.medntd.2023.100243. Epub 2023 Jun 2.

Abstract

As we set into the second half of 2022, the world is still recovering from the two-year COVID-19 pandemic. However, over the past three months, the outbreak of the Monkeypox Virus (MPV) has led to fifty-two thousand confirmed cases and over one hundred deaths. This caused the World Health Organisation to declare the outbreak a Public Health Emergency of International Concern (PHEIC). If this outbreak worsens, we could be looking at the Monkeypox virus causing the next global pandemic. As Monkeypox affects the human skin, the symptoms can be captured with regular imaging. Large samples of these images can be used as a training dataset for machine learning-based detection tools. Using a regular camera to capture the skin image of the infected person and running it against computer vision models is beneficial. In this research, we use deep learning to diagnose monkeypox from skin lesion images. Using a publicly available dataset, we tested the dataset on five pre-trained deep neural networks: GoogLeNet, Places365-GoogLeNet, SqueezeNet, AlexNet and ResNet-18. Hyperparameter was done to choose the best parameters. Performance metrics such as accuracy, precision, recall, f1-score and AUC were considered. Among the above models, ResNet18 was able to obtain the highest accuracy of 99.49%. The modified models obtained validation accuracies above 95%. The results prove that deep learning models such as the proposed model based on ResNet-18 can be deployed and can be crucial in battling the monkeypox virus. Since the used networks are optimized for efficiency, they can be used on performance limited devices such as smartphones with cameras. The addition of explainable artificial intelligence techniques LIME and GradCAM enables visual interpretation of the prediction made, helping health professionals using the model.

摘要

随着我们步入2022年下半年,世界仍在从长达两年的新冠疫情中恢复。然而,在过去三个月里,猴痘病毒(MPV)的爆发已导致5.2万例确诊病例和100多人死亡。这使得世界卫生组织宣布该疫情为国际关注的突发公共卫生事件(PHEIC)。如果疫情恶化,我们可能会面临猴痘病毒引发下一场全球大流行的情况。由于猴痘会影响人体皮肤,其症状可以通过常规成像捕捉。大量的这些图像样本可作为基于机器学习的检测工具的训练数据集。使用普通相机捕捉感染者的皮肤图像并与计算机视觉模型进行比对是有益的。在本研究中,我们使用深度学习从皮肤病变图像中诊断猴痘。我们使用一个公开可用的数据集,在五个预训练的深度神经网络上对该数据集进行测试:GoogLeNet、Places365 - GoogLeNet、SqueezeNet、AlexNet和ResNet - 18。进行了超参数调整以选择最佳参数。考虑了诸如准确率、精确率、召回率、F1分数和AUC等性能指标。在上述模型中,ResNet18能够获得最高99.49%的准确率。改进后的模型获得了高于95%的验证准确率。结果证明,基于ResNet - 18的深度学习模型(如所提出的模型)可以被部署,并且在对抗猴痘病毒方面可能至关重要。由于所使用的网络针对效率进行了优化,它们可以在性能有限的设备(如带摄像头的智能手机)上使用。可解释人工智能技术LIME和GradCAM的加入能够对所做的预测进行可视化解释,有助于使用该模型的卫生专业人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c32/10236924/b8e27a4e9181/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验