Suppr超能文献

基于启用LIME的深度卷积神经网络研究的猴痘图像分类

Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network.

作者信息

Lakshmi M, Das Raja

机构信息

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.

出版信息

Diagnostics (Basel). 2023 May 5;13(9):1639. doi: 10.3390/diagnostics13091639.

Abstract

In this research, we demonstrate a Deep Convolutional Neural Network-based classification model for the detection of monkeypox. Monkeypox can be difficult to diagnose clinically in its early stages since it resembles both chickenpox and measles in symptoms. The early diagnosis of monkeypox helps doctors cure it more quickly. Therefore, pre-trained models are frequently used in the diagnosis of monkeypox, because the manual analysis of a large number of images is labor-intensive and prone to inaccuracy. Therefore, finding the monkeypox virus requires an automated process. The large layer count of convolutional neural network (CNN) architectures enables them to successfully conceptualize the features on their own, thereby contributing to better performance in image classification. The scientific community has recently articulated significant attention in employing artificial intelligence (AI) to diagnose monkeypox from digital skin images due primarily to AI's success in COVID-19 identification. The VGG16, VGG19, ResNet50, ResNet101, DenseNet201, and AlexNet models were used in our proposed method to classify patients with monkeypox symptoms with other diseases of a similar kind (chickenpox, measles, and normal). The majority of images in our research are collected from publicly available datasets. This study suggests an adaptive k-means clustering image segmentation technique that delivers precise segmentation results with straightforward operation. Our preliminary computational findings reveal that the proposed model could accurately detect patients with monkeypox. The best overall accuracy achieved by ResNet101 is 94.25%, with an AUC of 98.59%. Additionally, we describe the categorization of our model utilizing feature extraction using Local Interpretable Model-Agnostic Explanations (LIME), which provides a more in-depth understanding of particular properties that distinguish the monkeypox virus.

摘要

在本研究中,我们展示了一种基于深度卷积神经网络的猴痘检测分类模型。猴痘在临床早期可能难以诊断,因为其症状与水痘和麻疹相似。猴痘的早期诊断有助于医生更快地治愈它。因此,预训练模型经常用于猴痘的诊断,因为对大量图像进行人工分析既费力又容易不准确。因此,检测猴痘病毒需要一个自动化过程。卷积神经网络(CNN)架构的层数众多,使其能够自行成功地概念化特征,从而在图像分类中表现得更好。科学界最近对利用人工智能(AI)从数字皮肤图像中诊断猴痘给予了极大关注,这主要是由于AI在新冠病毒识别方面取得了成功。我们提出的方法使用VGG16、VGG19、ResNet50、ResNet101、DenseNet201和AlexNet模型,将有猴痘症状的患者与其他类似疾病(水痘、麻疹和正常情况)进行分类。我们研究中的大多数图像是从公开可用的数据集中收集的。本研究提出了一种自适应k均值聚类图像分割技术,该技术操作简单,能提供精确的分割结果。我们初步的计算结果表明,所提出的模型能够准确检测出猴痘患者。ResNet101实现的最佳总体准确率为94.25%,曲线下面积(AUC)为98.59%。此外,我们还描述了利用局部可解释模型无关解释(LIME)进行特征提取对我们模型的分类,这能更深入地理解区分猴痘病毒的特定属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5349/10178151/06b45b037d87/diagnostics-13-01639-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验