Chapman Alec B, Cordasco Kristina, Chassman Stephanie, Panadero Talia, Agans Dylan, Jackson Nicholas, Clair Kimberly, Nelson Richard, Montgomery Ann Elizabeth, Tsai Jack, Finley Erin, Gabrielian Sonya
Informatics, Decision-Enhancement and Analytic Sciences (IDEAS) Center, Salt Lake City Veterans Affairs Healthcare System, Salt Lake City, UT, United States.
Division of Epidemiology, University of Utah, School of Medicine, Salt Lake City, UT, United States.
Front Artif Intell. 2023 May 24;6:1187501. doi: 10.3389/frai.2023.1187501. eCollection 2023.
Measuring long-term housing outcomes is important for evaluating the impacts of services for individuals with homeless experience. However, assessing long-term housing status using traditional methods is challenging. The Veterans Affairs (VA) Electronic Health Record (EHR) provides detailed data for a large population of patients with homeless experiences and contains several indicators of housing instability, including structured data elements (e.g., diagnosis codes) and free-text clinical narratives. However, the validity of each of these data elements for measuring housing stability over time is not well-studied.
We compared VA EHR indicators of housing instability, including information extracted from clinical notes using natural language processing (NLP), with patient-reported housing outcomes in a cohort of homeless-experienced Veterans.
NLP achieved higher sensitivity and specificity than standard diagnosis codes for detecting episodes of unstable housing. Other structured data elements in the VA EHR showed promising performance, particularly when combined with NLP.
Evaluation efforts and research studies assessing longitudinal housing outcomes should incorporate multiple data sources of documentation to achieve optimal performance.
衡量长期住房成果对于评估为有过无家可归经历的个人提供的服务的影响至关重要。然而,使用传统方法评估长期住房状况具有挑战性。退伍军人事务部(VA)电子健康记录(EHR)为大量有过无家可归经历的患者提供了详细数据,并包含若干住房不稳定指标,包括结构化数据元素(如诊断代码)和自由文本临床叙述。然而,随着时间的推移,这些数据元素中每一个用于衡量住房稳定性的有效性尚未得到充分研究。
我们将VA EHR住房不稳定指标,包括使用自然语言处理(NLP)从临床记录中提取的信息,与一组有过无家可归经历的退伍军人报告的住房成果进行了比较。
在检测不稳定住房事件方面,NLP比标准诊断代码具有更高的敏感性和特异性。VA EHR中的其他结构化数据元素表现出良好的性能,特别是与NLP结合使用时。
评估纵向住房成果的评估工作和研究应纳入多个文档数据源,以实现最佳性能。