School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Lab Chip. 2023 Jun 28;23(13):3016-3033. doi: 10.1039/d3lc00176h.
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
液滴喷射策略是一种很有前途的工具,可以减少在 X 射线自由电子激光(XFEL)连续注入方法下进行串行飞秒晶体学(SFX)测量时所需的大量样品。在这里,我们展示了一种新的模块化微流控液滴喷射器(MDI)设计,该设计已成功应用于输送人类 NAD(P)H:醌氧化还原酶 1(NQO1)和藻蓝蛋白的微晶体。我们通过电刺激研究了两种蛋白质样品的液滴生成条件,并为斯坦福直线感应加速器相干光源(LCLS)的大分子飞秒晶体学(MFX)仪器的优化晶体喷射实施了硬件和软件组件。在优化的液滴喷射条件下,我们证明液滴喷射器可以将样品消耗节省高达 4 倍。此外,我们使用液滴喷射收集了 NQO1 蛋白晶体的完整数据集,分辨率高达 2.7 Å,这是 XFEL 中首次获得 NQO1 的室温结构。NQO1 是一种与癌症、阿尔茨海默病和帕金森病相关的黄素酶,使其成为药物发现的有吸引力的靶标。我们的结果首次表明,在晶体中,在室温下,对于蛋白质功能起关键作用的 Tyr128 和 Phe232 残基表现出出乎意料的构象异质性。这些结果表明,在 NQO1 的构象集合中存在不同的亚稳态,这对酶的负协同作用具有功能和机制意义,通过构象选择机制。我们的研究表明,微流控液滴喷射是一种稳健的保留样品的注入方法,适用于难以获得连续注入所需数量的蛋白质晶体的 SFX 研究,包括时间分辨混合注入研究所需的大量样品。