Manna Abhik, Sonker Mukul, Koh Domin, Steiger Michael, Ansari Adil, Hu Hao, Quereda-Moraleda Isabel, Grieco Alice, Doppler Diandra, de Sanctis Daniele, Basu Shibom, Orlans Julien, Rose Samuel L, Botha Sabine, Martin-Garcia Jose Manuel, Ros Alexandra
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.
Anal Chem. 2024 Dec 31;96(52):20371-20381. doi: 10.1021/acs.analchem.4c03484. Epub 2024 Dec 16.
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
串行大分子X射线晶体学在阐明蛋白质结构以及推动靶向治疗领域的发展方面发挥着重要作用。使用不同重复频率的脉冲束需要开发各种样品保存注射策略,以尽量减少X射线曝光之间的样品浪费。使用固体支撑物将晶体固定在X射线束路径中的固定靶样品递送方法,作为一种具有高晶体命中率的X射线晶体学样品保存递送系统,正受到关注。在此,我们展示了一种新型的固定靶微流体系统,用于将蛋白质微晶递送至X射线束以进行衍射数据收集和结构测定。固定靶设计由3个对称部分组成,排列在1英寸×1英寸的区域内,每个器件最多有18000个晶体阱。每个阱的目标是容纳一个最大尺寸达50μm的晶体。该器件采用环烯烃共聚物(COC)制造,用于高质量衍射数据收集,通过固定靶材料诱导的背景散射较低。新开发的固定靶器件设计为与真空兼容,这将使其能够在包括新开发的、同类首创的紧凑型X射线光源(CXLS)在内的X射线辐射源的真空实验室内使用,CXLS目前正在亚利桑那州立大学进行调试。为了评估COC器件的有效性,在新的欧洲同步辐射装置 - 极亮光源(ESRF - EBS)的ID29光束线上对模型蛋白溶菌酶进行了串行晶体学实验。解析出了该蛋白质的1.6Å晶体结构,表明一般而言,COC器件可用于从CXLS和同步辐射源的大分子晶体生成高质量数据,这对于通过固定靶X射线晶体学推进蛋白质结构测定领域具有巨大潜力。