Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
School of Materials Science and Engineering, Peking University, Beijing 100871, China.
Acc Chem Res. 2023 Jul 4;56(13):1780-1790. doi: 10.1021/acs.accounts.3c00121. Epub 2023 Jun 9.
ConspectusThe synthesis of monodisperse colloidal nanomaterials with well-defined structures is important for both fundamental research and practical application. To achieve it, wet-chemical methods with the usage of various ligands have been extensively explored to finely control the structure of nanomaterials. During the synthesis, ligands cap the surface and thus modulate the size, shape, and stability of nanomaterials in solvents. Besides these widely investigated roles of ligands, it has been recently discovered that ligands can affect the phase of nanomaterials, i.e., their atomic arrangement, providing an effective strategy to realize the phase engineering of nanomaterials (PEN) by selecting appropriate ligands. Nanomaterials normally exist in the phases that are thermodynamically stable in their bulk states. Previous studies have shown that under high temperature or high pressure, nanomaterials can exist in unconventional phases which are unattainable in the bulks. Importantly, nanomaterials with unconventional phases exhibit unique properties and functions different from conventional-phase ones. Consequently, it is feasible to utilize the PEN to tune the physicochemical properties and application performance of nanomaterials. During wet-chemical synthesis, ligands binding to the surface of nanomaterials can modify their surface energy, which could significantly affect the Gibbs free energy of nanomaterials and thus determine the stability of different phases, making it possible to obtain nanomaterials with unconventional phases at mild reaction conditions. For instance, a series of Au nanomaterials with unconventional hexagonal phases have been prepared with the assistance of oleylamine. Therefore, the rational design and selection of different ligands and deep understanding of their effect on the phase of nanomaterials would significantly accelerate the development of PEN and the discovery of novel functional nanomaterials for diverse applications.In this Account, we briefly summarize the recent progress in ligand-assisted PEN, elaborating the important roles of different ligands in the direct synthesis of nanomaterials with unconventional crystal phases and amorphous phase as well as the phase transformation of nanomaterials. We first introduce the background of this research topic, highlighting the concept of PEN and why ligands can modulate the phase of nanomaterials. Then we discuss the usage of four kinds of ligands, i.e., amines, fatty acids, sulfur-containing ligands, and phosphorus-containing ligands, in phase engineering of different nanomaterials, especially metal, metal chalcogenide, and metal oxide nanomaterials. Finally, we provide our personal views of the challenges and future promising research directions in this exciting field.
概述
合成具有明确结构的单分散胶体纳米材料对于基础研究和实际应用都非常重要。为了实现这一目标,人们广泛探索了使用各种配体的湿化学方法,以精细控制纳米材料的结构。在合成过程中,配体覆盖在表面上,从而调节纳米材料在溶剂中的尺寸、形状和稳定性。除了这些广泛研究的配体作用外,最近发现配体可以影响纳米材料的相,即它们的原子排列,为通过选择合适的配体实现纳米材料的相工程(PEN)提供了一种有效的策略。纳米材料通常存在于其体相中热力学稳定的相中。以前的研究表明,在高温或高压下,纳米材料可以存在于非常规相中,而这些相在体相中是无法获得的。重要的是,具有非常规相的纳米材料表现出与常规相不同的独特性质和功能。因此,可以利用 PEN 来调节纳米材料的物理化学性质和应用性能。在湿化学合成中,与纳米材料表面结合的配体可以修饰其表面能,这会显著影响纳米材料的吉布斯自由能,从而决定不同相的稳定性,使得在温和的反应条件下获得具有非常规相的纳米材料成为可能。例如,在油胺的辅助下,已经制备了一系列具有非常规六方相的 Au 纳米材料。因此,合理设计和选择不同的配体,并深入了解它们对纳米材料相的影响,将显著加速 PEN 的发展和发现用于各种应用的新型功能纳米材料。
在本综述中,我们简要总结了配体辅助 PEN 的最新进展,详细阐述了不同配体在直接合成具有非常规晶体相和非晶相以及纳米材料的相变中的重要作用。我们首先介绍了这个研究课题的背景,强调了 PEN 的概念以及配体为什么可以调节纳米材料的相。然后我们讨论了胺、脂肪酸、含硫配体和含磷配体等四种配体在不同纳米材料的相工程中的应用,特别是金属、金属硫属化物和金属氧化物纳米材料。最后,我们对这个令人兴奋的领域的挑战和未来有前景的研究方向提出了个人看法。