Sel Kaan, Mohammadi Amirmohammad, Pettigrew Roderic I, Jafari Roozbeh
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.
NPJ Digit Med. 2023 Jun 9;6(1):110. doi: 10.1038/s41746-023-00853-4.
The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance. However, these algorithms need training over significant amount of ground truth data. In the context of biomedical applications, collecting ground truth data, particularly at the personalized level is challenging, burdensome, and in some cases infeasible. Our objective is to establish physics-informed neural network (PINN) models for physiological time series data that would use minimal ground truth information to extract complex cardiovascular information. We achieve this by building Taylor's approximation for gradually changing known cardiovascular relationships between input and output (e.g., sensor measurements to blood pressure) and incorporating this approximation into our proposed neural network training. The effectiveness of the framework is demonstrated through a case study: continuous cuffless BP estimation from time series bioimpedance data. We show that by using PINNs over the state-of-the-art time series models tested on the same datasets, we retain high correlations (systolic: 0.90, diastolic: 0.89) and low error (systolic: 1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg) while reducing the amount of ground truth training data on average by a factor of 15. This could be helpful in developing future AI algorithms to help interpret pervasive physiologic data using minimal amount of training data.
十年前开始普及的现成可穿戴设备所带来的人工智能驱动的普及型生理监测的大胆设想,为精准医学提取可操作信息创造了巨大机遇。这些人工智能算法对系统的输入输出关系进行建模,在许多情况下,该系统具有复杂的性质和个性化要求。一个具体例子是使用可穿戴生物阻抗进行无袖带血压估计。然而,这些算法需要大量真实数据进行训练。在生物医学应用背景下,收集真实数据,尤其是个性化层面的数据具有挑战性、负担重,且在某些情况下不可行。我们的目标是为生理时间序列数据建立物理信息神经网络(PINN)模型,该模型将使用最少的真实信息来提取复杂的心血管信息。我们通过构建泰勒近似来实现这一目标,该近似用于逐渐变化的已知输入与输出(例如传感器测量值与血压)之间的心血管关系,并将此近似纳入我们提出的神经网络训练中。通过一个案例研究证明了该框架的有效性:从时间序列生物阻抗数据进行连续无袖带血压估计。我们表明,在相同数据集上测试的最先进时间序列模型上使用PINN时,我们保持了高相关性(收缩压:0.90,舒张压:0.89)和低误差(收缩压:1.3±7.6 mmHg,舒张压:0.6±6.4 mmHg),同时平均将真实训练数据量减少了15倍。这有助于开发未来的人工智能算法,以使用最少的训练数据来帮助解释普及型生理数据。