Saito Akihiro, Hoshi Kimika, Wakabayashi Yuna, Togashi Takumi, Shigematsu Tomoki, Katori Maya, Ohyama Takuji, Higuchi Kyoko
Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
Plants (Basel). 2023 May 26;12(11):2111. doi: 10.3390/plants12112111.
The barley cultivar Sarab 1 (SRB1) can continue photosynthesis despite its low Fe acquisition potential via roots and dramatically reduced amounts of photosystem I (PSI) reaction-center proteins under Fe-deficient conditions. We compared the characteristics of photosynthetic electron transfer (ET), thylakoid ultrastructure, and Fe and protein distribution on thylakoid membranes among barley cultivars. The Fe-deficient SRB1 had a large proportion of functional PSI proteins by avoiding P700 over-reduction. An analysis of the thylakoid ultrastructure clarified that SRB1 had a larger proportion of non-appressed thylakoid membranes than those in another Fe-tolerant cultivar, Ehimehadaka-1 (EHM1). Separating thylakoids by differential centrifugation further revealed that the Fe-deficient SRB1 had increased amounts of low/light-density thylakoids with increased Fe and light-harvesting complex II (LHCII) than did EHM1. LHCII with uncommon localization probably prevents excessive ET from PSII leading to elevated NPQ and lower PSI photodamage in SRB1 than in EHM1, as supported by increased Y(NPQ) and Y(ND) in the Fe-deficient SRB1. Unlike this strategy, EHM1 may preferentially supply Fe cofactors to PSI, thereby exploiting more surplus reaction center proteins than SRB1 under Fe-deficient conditions. In summary, SRB1 and EHM1 support PSI through different mechanisms during Fe deficiency, suggesting that barley species have multiple strategies for acclimating photosynthetic apparatus to Fe deficiency.
大麦品种萨拉布1(SRB1)尽管在缺铁条件下通过根系获取铁的能力较低且光系统I(PSI)反应中心蛋白的数量大幅减少,但仍能继续进行光合作用。我们比较了大麦品种间光合电子传递(ET)特性、类囊体超微结构以及类囊体膜上铁和蛋白质的分布情况。缺铁的SRB1通过避免P700过度还原,拥有较大比例的功能性PSI蛋白。对类囊体超微结构的分析表明,SRB1的非堆积类囊体膜比例比另一个耐铁品种爱媛高稻1号(EHM1)更大。通过差速离心分离类囊体进一步显示,缺铁的SRB1比EHM1具有更多数量的低/低密度类囊体,其铁和捕光复合物II(LHCII)含量增加。缺铁的SRB1中Y(NPQ)和Y(ND)增加,这表明LHCII不寻常的定位可能会阻止PSII过多的电子传递,导致SRB1中NPQ升高且PSI光损伤低于EHM1。与这种策略不同,EHM1可能优先向PSI供应铁辅因子,从而在缺铁条件下比SRB1利用更多多余的反应中心蛋白。总之,SRB1和EHM1在缺铁期间通过不同机制支持PSI,这表明大麦品种有多种使光合装置适应缺铁的策略。