Ou Tse-Hsien, Hu Pan, Liu Zerui, Wang Yunxiang, Hossain Sushmit, Meng Deming, Shi Yudi, Zhang Sonia, Zhang Boxin, Song Boxiang, Liu Fanxin, Cronin Stephen B, Wu Wei
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA.
Nanomaterials (Basel). 2023 May 27;13(11):1753. doi: 10.3390/nano13111753.
The carbon dioxide reduction reaction (CO2RR) is a promising method to both reduce greenhouse gas carbon dioxide (CO) concentrations and provide an alternative to fossil fuel by converting water and CO into high-energy-density chemicals. Nevertheless, the CO2RR suffers from high chemical reaction barriers and low selectivity. Here we demonstrate that 4 nm gap plasmonic nano-finger arrays provide a reliable and repeatable plasmon-resonant photocatalyst for multiple-electrons reactions: the CO2RR to generate higher-order hydrocarbons. Electromagnetics simulation shows that hot spots with 10,000 light intensity enhancement can be achieved using nano-gap fingers under a resonant wavelength of 638 nm. From cryogenic H-NMR spectra, formic acid and acetic acid productions are observed with a nano-fingers array sample. After 1 h laser irradiation, we only observe the generation of formic acid in the liquid solution. While increasing the laser irradiation period, we observe both formic and acetic acid in the liquid solution. We also observe that laser irradiation at different wavelengths significantly affected the generation of formic acid and acetic acid. The ratio, 2.29, of the product concentration generated at the resonant wavelength 638 nm and the non-resonant wavelength 405 nm is close to the ratio, 4.93, of the generated hot electrons inside the TiO layer at different wavelengths from the electromagnetics simulation. This shows that product generation is related to the strength of localized electric fields.
二氧化碳还原反应(CO2RR)是一种很有前景的方法,既能降低温室气体二氧化碳(CO₂)的浓度,又能通过将水和CO₂转化为高能量密度的化学品来提供化石燃料的替代品。然而,CO2RR存在化学反应壁垒高和选择性低的问题。在此,我们证明4纳米间隙的等离子体纳米指阵列可为多电子反应提供一种可靠且可重复的等离子体共振光催化剂:即用于将CO₂RR生成高阶碳氢化合物。电磁模拟表明,在638纳米的共振波长下,使用纳米间隙指可实现光强增强10000倍的热点。通过低温¹H-NMR光谱,在纳米指阵列样品中观察到了甲酸和乙酸的生成。激光照射1小时后,我们在液体溶液中仅观察到甲酸的生成。随着激光照射时间的增加,我们在液体溶液中观察到了甲酸和乙酸。我们还观察到不同波长的激光照射对甲酸和乙酸的生成有显著影响。在共振波长638纳米和非共振波长405纳米处生成的产物浓度之比2.29,与电磁模拟中TiO层内不同波长处生成的热电子之比4.93相近。这表明产物的生成与局部电场的强度有关。