Corson Elizabeth R, Creel Erin B, Kostecki Robert, McCloskey Bryan D, Urban Jeffrey J
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
iScience. 2020 Mar 27;23(3):100911. doi: 10.1016/j.isci.2020.100911. Epub 2020 Feb 14.
In this perspective we compare plasmon-enhanced electrochemical conversion (PEEC) with photoelectrochemistry (PEC). PEEC is the oxidation or reduction of a reactant at the illuminated surface of a plasmonic metal (or other conductive material) while a potential bias is applied. PEC uses solar light to generate photoexcited electron-hole pairs to drive an electrochemical reaction at a biased or unbiased semiconductor photoelectrode. The mechanism of photoexcitation of charge carriers is different between PEEC and PEC. Here we explore how this difference affects the response of PEEC and PEC systems to changes in light, temperature, and surface morphology of the photoelectrode.
从这个角度出发,我们将等离子体增强电化学转换(PEEC)与光电化学(PEC)进行比较。PEEC是在施加电势偏压的情况下,使反应物在等离子体金属(或其他导电材料)的光照表面发生氧化或还原反应。PEC利用太阳光产生光激发电子 - 空穴对,以驱动在有偏压或无偏压的半导体光电极上发生的电化学反应。PEEC和PEC之间电荷载流子的光激发机制不同。在此,我们探讨这种差异如何影响PEEC和PEC系统对光、温度以及光电极表面形态变化的响应。