Suppr超能文献

具有自动和整体特征提取功能的物联网流量分析工具。

IoT Traffic Analyzer Tool with Automated and Holistic Feature Extraction Capability.

作者信息

Subahi Alanoud, Almasre Miada

机构信息

Faculty of Computing and Information Technology, Department of Information Technology, King Abdulaziz University, Rabigh 25732, Saudi Arabia.

Faculty of Computing and Information Technology, Department of Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Sensors (Basel). 2023 May 23;23(11):5011. doi: 10.3390/s23115011.

Abstract

The Internet of Things (IoT) is an emerging technology that attracted considerable attention in the last decade to become one of the most researched topics in computer science studies. This research aims to develop a benchmark framework for a public multi-task IoT traffic analyzer tool that holistically extracts network traffic features from an IoT device in a smart home environment that researchers in various IoT industries can implement to collect information about IoT network behavior. A custom testbed with four IoT devices is created to collect real-time network traffic data based on seventeen comprehensive scenarios of these devices' possible interactions. The output data is fed into the IoT traffic analyzer tool for both flow and packet levels analysis to extract all possible features. Such features are ultimately classified into five categories: IoT device type, IoT device behavior, Human interaction type, IoT behavior within the network, and Abnormal behavior. The tool is then evaluated by 20 users considering three variables: usefulness, accuracy of information being extracted, performance and usability. Users in three groups were highly satisfied with the interface and ease of use of the tool, with scores ranging from 90.5% to 93.8% and with an average score between 4.52 and 4.69 with a low standard deviation range, indicating that most of the data revolve around the mean.

摘要

物联网(IoT)是一项新兴技术,在过去十年中备受关注,成为计算机科学研究中研究最多的主题之一。本研究旨在为公共多任务物联网流量分析工具开发一个基准框架,该工具可在智能家居环境中从物联网设备全面提取网络流量特征,各物联网行业的研究人员可利用该框架收集有关物联网网络行为的信息。创建了一个包含四个物联网设备的定制测试平台,根据这些设备可能的交互的十七种综合场景收集实时网络流量数据。将输出数据输入到物联网流量分析工具中进行流级和包级分析,以提取所有可能的特征。这些特征最终分为五类:物联网设备类型、物联网设备行为、人机交互类型、网络内的物联网行为和异常行为。然后由20名用户对该工具进行评估,考虑三个变量:有用性、所提取信息的准确性、性能和可用性。三组用户对该工具的界面和易用性高度满意,满意度得分在90.5%至93.8%之间,平均得分在4.52至4.69之间,标准差范围较低,表明大多数数据围绕平均值分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e9/10255786/583da286a45c/sensors-23-05011-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验