Suppr超能文献

使用稳健统计特征改进物联网设备的时间识别

Improved temporal IoT device identification using robust statistical features.

作者信息

Aqil Nik, Zaki Faiz, Afifi Firdaus, Hanif Hazim, Kiah Miss Laiha Mat, Anuar Nor Badrul

机构信息

Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.

Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.

出版信息

PeerJ Comput Sci. 2024 Jul 9;10:e2145. doi: 10.7717/peerj-cs.2145. eCollection 2024.

Abstract

The Internet of Things (IoT) is becoming more prevalent in our daily lives. A recent industry report projected the global IoT market to be worth more than USD 4 trillion by 2032. To cope with the ever-increasing IoT devices in use, identifying and securing IoT devices has become highly crucial for network administrators. In that regard, network traffic classification offers a promising solution by precisely identifying IoT devices to enhance network visibility, allowing better network security. Currently, most IoT device identification solutions revolve around machine learning, outperforming prior solutions like port and behavioural-based. Although performant, these solutions often experience performance degradation over time due to statistical changes in the data. As a result, they require frequent retraining, which is computationally expensive. Therefore, this article aims to improve the model performance through a robust alternative feature set. The improved feature set leverages payload lengths to model the unique characteristics of IoT devices and remains stable over time. Besides that, this article utilizes the proposed feature set with Random Forest and OneVSRest to optimize the learning process, particularly concerning the easier addition of new IoT devices. On the other hand, this article introduces weekly dataset segmentation to ensure fair evaluation over different time frames. Evaluation on two datasets, a public dataset, IoT Traffic Traces, and a self-collected dataset, IoT-FSCIT, show that the proposed feature set maintained above 80% accuracy throughout all weeks on the IoT Traffic Traces dataset, outperforming selected benchmark studies while improving accuracy over time by +10.13% on the IoT-FSCIT dataset.

摘要

物联网(IoT)在我们的日常生活中越来越普遍。最近的一份行业报告预测,到2032年,全球物联网市场价值将超过4万亿美元。为了应对日益增加的在用物联网设备,识别和保障物联网设备的安全对网络管理员来说变得至关重要。在这方面,网络流量分类通过精确识别物联网设备来提高网络可见性,从而提供了一个有前景的解决方案,有助于实现更好的网络安全。目前,大多数物联网设备识别解决方案都围绕机器学习展开,其性能优于基于端口和行为的先前解决方案。尽管这些解决方案性能良好,但由于数据的统计变化,它们的性能往往会随着时间的推移而下降。因此,它们需要频繁重新训练,这在计算上成本很高。因此,本文旨在通过一个强大的替代特征集来提高模型性能。改进后的特征集利用有效载荷长度来对物联网设备的独特特征进行建模,并且随着时间的推移保持稳定。除此之外,本文将所提出的特征集与随机森林和一对多分类器相结合,以优化学习过程,特别是在更容易添加新的物联网设备方面。另一方面,本文引入了每周数据集分割,以确保在不同时间框架内进行公平评估。对两个数据集的评估,一个公共数据集“物联网流量踪迹”(IoT Traffic Traces)和一个自行收集的数据集“物联网 - FSCIT”(IoT - FSCIT)表明,所提出的特征集在“物联网流量踪迹”数据集的所有周中准确率均保持在80%以上,优于所选的基准研究,同时在“物联网 - FSCIT”数据集上随着时间的推移准确率提高了10.13%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d0/11323103/2b7d7b3b64b1/peerj-cs-10-2145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验