Suppr超能文献

利用优化的变分自编码器 Wasserstein 生成对抗网络对物联网设备类型进行识别,从而增强物联网安全性。

Bolstering IoT security with IoT device type Identification using optimized Variational Autoencoder Wasserstein Generative Adversarial Network.

机构信息

Department of Computer Science and Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India.

Assistant Professor, Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

Network. 2024 Aug;35(3):278-299. doi: 10.1080/0954898X.2024.2304214. Epub 2024 Jan 31.

Abstract

Due to the massive growth in Internet of Things (IoT) devices, it is necessary to properly identify, authorize, and protect against attacks the devices connected to the particular network. In this manuscript, IoT Device Type Identification based on Variational Auto Encoder Wasserstein Generative Adversarial Network optimized with Pelican Optimization Algorithm (IoT-DTI-VAWGAN-POA) is proposed for Prolonging IoT Security. The proposed technique comprises three phases, such as data collection, feature extraction, and IoT device type detection. Initially, real network traffic dataset is gathered by distinct IoT device types, like baby monitor, security camera, etc. For feature extraction phase, the network traffic feature vector comprises packet sizes, Mean, Variance, Kurtosis derived by Adaptive and concise empirical wavelet transforms. Then, the extracting features are supplied to VAWGAN is used to identify the IoT devices as known or unknown. Then Pelican Optimization Algorithm (POA) is considered to optimize the weight factors of VAWGAN for better IoT device type identification. The proposed IoT-DTI-VAWGAN-POA method is implemented in Python and proficiency is examined under the performance metrics, like accuracy, precision, f-measure, sensitivity, Error rate, computational complexity, and RoC. It provides 33.41%, 32.01%, and 31.65% higher accuracy, and 44.78%, 43.24%, and 48.98% lower error rate compared to the existing methods.

摘要

由于物联网 (IoT) 设备的大规模增长,有必要正确识别、授权和防范连接到特定网络的设备受到攻击。在本文中,提出了一种基于变分自动编码器 Wasserstein 生成对抗网络优化 Pelican 优化算法 (IoT-DTI-VAWGAN-POA) 的物联网设备类型识别方法,用于延长物联网的安全性。所提出的技术包括三个阶段,如数据收集、特征提取和物联网设备类型检测。最初,通过不同的物联网设备类型(如婴儿监视器、安全摄像头等)收集真实的网络流量数据集。在特征提取阶段,网络流量特征向量包括由自适应简洁经验小波变换得出的数据包大小、均值、方差和峰度。然后,将提取的特征提供给 VAWGAN 用于识别已知或未知的物联网设备。然后,考虑使用 Pelican 优化算法 (POA) 来优化 VAWGAN 的权重因子,以实现更好的物联网设备类型识别。所提出的 IoT-DTI-VAWGAN-POA 方法是在 Python 中实现的,并根据准确性、精度、F1 度量、敏感性、误差率、计算复杂度和 ROC 等性能指标进行评估。与现有方法相比,它提供了 33.41%、32.01%和 31.65%的更高准确性,以及 44.78%、43.24%和 48.98%的更低误差率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验