Pro2Future GmbH, Altenberger Strasse 69, 4040 Linz, Austria.
Institute of Pervasive Computing, Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria.
Sensors (Basel). 2023 May 25;23(11):5057. doi: 10.3390/s23115057.
This paper presents a novel approach for counting hand-performed activities using deep learning and inertial measurement units (IMUs). The particular challenge in this task is finding the correct window size for capturing activities with different durations. Traditionally, fixed window sizes have been used, which occasionally result in incorrectly represented activities. To address this limitation, we propose segmenting the time series data into variable-length sequences using ragged tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to simplify the annotation process and reduce the time to prepare annotated data for machine learning algorithms. Thus, the model receives only partial information about the performed activity. Therefore, we propose an LSTM-based architecture, which takes into account both the ragged tensors and the weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size IMU acceleration data with relatively low computational requirements using the number of completed repetitions of hand-performed activities as a label. Hence, we present the data segmentation method we employed and the model architecture that we implemented to show the effectiveness of our approach. Our results are evaluated using the Skoda public dataset for Human activity recognition (HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of this study have applications and can be beneficial for various fields, including healthcare, sports and fitness, human-computer interaction, robotics, and the manufacturing industry.
本文提出了一种使用深度学习和惯性测量单元(IMU)对手动执行活动进行计数的新方法。在这项任务中,特别的挑战是找到捕捉具有不同持续时间的活动的正确窗口大小。传统上,使用固定的窗口大小,这偶尔会导致活动的表示不正确。为了解决这个限制,我们提出使用参差不齐的张量将时间序列数据分割成可变长度的序列,以存储和处理数据。此外,我们的方法利用弱标签数据来简化注释过程,并减少为机器学习算法准备注释数据的时间。因此,模型仅接收到有关执行活动的部分信息。因此,我们提出了一种基于 LSTM 的架构,该架构考虑了参差不齐的张量和弱标签。据我们所知,以前没有研究尝试使用相对较低的计算要求的可变大小的 IMU 加速度数据来计数,而是将手动执行活动的完成重复次数作为标签。因此,我们展示了我们使用的数据分段方法和实现的模型架构,以展示我们方法的有效性。我们的结果使用 Skoda 公共人体活动识别(HAR)数据集进行评估,即使在最具挑战性的情况下,也能实现±1 的重复误差。这项研究的结果具有应用价值,并可有益于医疗保健、运动和健身、人机交互、机器人技术和制造业等各个领域。