Suppr超能文献

城市级别的停车场时空聚类,以实现高效共享车位占有率预测模型。

Spatiotemporal Clustering of Parking Lots at the City Level for Efficiently Sharing Occupancy Forecasting Models.

机构信息

Laboratoire d'Automatique, de Mecanique et d'Informatique Industrielles et Humaines (LAMIH)-UMR CNRS 8201, Universite Polytechnique Hauts de France (UPHF) Mont Houy, 59313 Valenciennes, France.

State Polytechnique of Batam, Batam 29461, Kepulauan Riau, Indonesia.

出版信息

Sensors (Basel). 2023 May 31;23(11):5248. doi: 10.3390/s23115248.

Abstract

This study aims to address the challenge of developing accurate and efficient parking occupancy forecasting models at the city level for autonomous vehicles. Although deep learning techniques have been successfully employed to develop such models for individual parking lots, it is a resource-intensive process that requires significant amounts of time and data for each parking lot. To overcome this challenge, we propose a novel two-step clustering technique that groups parking lots based on their spatiotemporal patterns. By identifying the relevant spatial and temporal characteristics of each parking lot (parking profile) and grouping them accordingly, our approach allows for the development of accurate occupancy forecasting models for a set of parking lots, thereby reducing computational costs and improving model transferability. Our models were built and evaluated using real-time parking data. The obtained correlation rates of 86% for the spatial dimension, 96% for the temporal one, and 92% for both demonstrate the effectiveness of the proposed strategy in reducing model deployment costs while improving model applicability and transfer learning across parking lots.

摘要

本研究旨在解决为自动驾驶车辆在城市层面开发准确高效的停车占有率预测模型这一挑战。尽管深度学习技术已成功应用于开发各个停车场的此类模型,但对于每个停车场来说,这是一个资源密集型的过程,需要大量的时间和数据。为了克服这一挑战,我们提出了一种新颖的两步聚类技术,该技术根据停车场的时空模式对其进行分组。通过识别每个停车场(停车特征)的相关时空特征并对其进行相应分组,我们的方法允许为一组停车场开发准确的占有率预测模型,从而降低计算成本并提高模型的可转移性。我们的模型是使用实时停车数据构建和评估的。所获得的空间维度的 86%、时间维度的 96%和两个维度的 92%的相关率证明了所提出的策略在降低模型部署成本的同时提高了模型适用性和跨停车场的迁移学习能力的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6570/10256105/adc16437ae47/sensors-23-05248-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验