Suppr超能文献

面向智慧城市应用的资源受限物联网设备中的模糊内存恶意软件检测

Obfuscated Memory Malware Detection in Resource-Constrained IoT Devices for Smart City Applications.

作者信息

Shafin Sakib Shahriar, Karmakar Gour, Mareels Iven

机构信息

Centre for Smart Analytics (CSA), Federation University Australia, Ballarat, VIC 3350, Australia.

Institute of Innovation, Science and Sustainability (IISS), Federation University Australia, Ballarat, VIC 3350, Australia.

出版信息

Sensors (Basel). 2023 Jun 5;23(11):5348. doi: 10.3390/s23115348.

Abstract

Obfuscated Memory Malware (OMM) presents significant threats to interconnected systems, including smart city applications, for its ability to evade detection through concealment tactics. Existing OMM detection methods primarily focus on binary detection. Their multiclass versions consider a few families only and, thereby, fail to detect much existing and emerging malware. Moreover, their large memory size makes them unsuitable to be executed in resource-constrained embedded/IoT devices. To address this problem, in this paper, we propose a multiclass but lightweight malware detection method capable of identifying recent malware and is suitable to execute in embedded devices. For this, the method considers a hybrid model by combining the feature-learning capabilities of convolutional neural networks with the temporal modeling advantage of bidirectional long short-term memory. The proposed architecture exhibits compact size and fast processing speed, making it suitable for deployment in IoT devices that constitute the major components of smart city systems. Extensive experiments with the recent CIC-Malmem-2022 OMM dataset demonstrate that our method outperforms other machine learning-based models proposed in the literature in both detecting OMM and identifying specific attack types. Our proposed method thus offers a robust yet compact model executable in IoT devices for defending against obfuscated malware.

摘要

混淆内存恶意软件(OMM)因其能够通过隐藏策略逃避检测,对包括智慧城市应用在内的互联系统构成了重大威胁。现有的OMM检测方法主要集中在二进制检测上。它们的多类版本只考虑少数几个家族,因此无法检测到许多现有的和新出现的恶意软件。此外,它们占用的内存很大,不适合在资源受限的嵌入式/物联网设备中执行。为了解决这个问题,在本文中,我们提出了一种多类但轻量级的恶意软件检测方法,该方法能够识别最新的恶意软件,并且适合在嵌入式设备中执行。为此,该方法通过将卷积神经网络的特征学习能力与双向长短期记忆的时间建模优势相结合,考虑了一种混合模型。所提出的架构具有紧凑的尺寸和快速的处理速度,使其适合部署在构成智慧城市系统主要组件的物联网设备中。使用最新的CIC-Malmem-2022 OMM数据集进行的大量实验表明,我们的方法在检测OMM和识别特定攻击类型方面均优于文献中提出的其他基于机器学习的模型。因此,我们提出的方法提供了一个强大而紧凑的模型,可在物联网设备中执行,以抵御混淆恶意软件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9012/10256113/a9d16086c5be/sensors-23-05348-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验