Pan Wei, Fang Xutao, Zang Zhiyi, Chi Baoan, Wei Xiaodong, Li Cui
Department of Cardio-Thoracic Surgery, The 904th Hospital of Joint Logistic Support Force of PLA Wuxi 214000, Jiangsu, China.
Department of Pharmacy, The 904th Hospital of Joint Logistic Support Force of PLA Wuxi 214000, Jiangsu, China.
Am J Transl Res. 2023 May 15;15(5):3318-3325. eCollection 2023.
To explore the accuracy of artificial intelligence (AI) for the diagnosis of pulmonary nodules (PNs) on computerized tomography (CT) scans.
In this study, 360 PNs (251 malignant nodules and 109 benign nodules) were retrospectively analyzed in 309 participants examined for PNs, and CT images were reviewed both by radiologists and using AI technology. With postoperative pathologic results as the gold standard, the accuracy, misdiagnosis, missed diagnosis, and true negative rates of CT results (human and AI) were calculated by using 2×2 crosstabs. Data confirmed to be normally distributed by the Shapiro-Wilk test were compared by the independent sample t-test, and the reading time of AI and human radiologists was compared.
AI demonstrates favorable accuracy for CT diagnosis of lung cancer and requires a shorter time for film reading. However, its diagnostic efficiency in identifying low- and moderate-grade PNs is relatively low, indicating a need for expansion of machine learning samples to improve its accuracy in identifying lower grade cancer nodules.
探讨人工智能(AI)在计算机断层扫描(CT)图像上诊断肺结节(PNs)的准确性。
本研究回顾性分析了309例接受PNs检查的参与者的360个PNs(251个恶性结节和109个良性结节),放射科医生和利用AI技术对CT图像进行了评估。以术后病理结果作为金标准,通过2×2列联表计算CT结果(人工和AI)的准确性、误诊率、漏诊率和真阴性率。经Shapiro-Wilk检验确认呈正态分布的数据采用独立样本t检验进行比较,并比较了AI和放射科医生的阅片时间。
1)AI诊断PNs的准确率为81.94%(295/360),漏诊率为15.14%(38/251),误诊率为24.77%(27/109),真阴性率为75.23%(82/109)。2)放射科医生诊断PNs的准确率、漏诊率、误诊率和真阴性率分别为83.06%(299/360)、22.31%(56/251)、4.59%(5/109)和95.41%(104/109)。3)AI和放射科医生的准确率和漏诊率相当,但AI的误诊率显著更高,真阴性率显著更低。4)AI所需的图像阅片时间(195.4±65.2秒)在统计学上短于人工检查所需的时间(581.1±116.8秒)。5)AI检测低、中、高恶性PNs的准确率分别为13.64%(9/66)、25.33%(19/75)和48.61%(35/72)。
AI在CT诊断肺癌方面显示出良好的准确性,且阅片时间较短。然而,其在识别低级别和中级别的PNs方面的诊断效率相对较低,这表明需要扩大机器学习样本以提高其识别低级别癌结节的准确性。