Suppr超能文献

人工智能在肺癌筛查中的应用:一项针对中国体检人群的真实世界研究。

Application of artificial intelligence in lung cancer screening: A real-world study in a Chinese physical examination population.

作者信息

Wu Jiaxuan, Li Ruicen, Gan Jiadi, Zheng Qian, Wang Guoqing, Tao Wenjuan, Yang Ming, Li Wenyu, Ji Guiyi, Li Weimin

机构信息

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, China.

出版信息

Thorac Cancer. 2024 Oct;15(28):2061-2072. doi: 10.1111/1759-7714.15428. Epub 2024 Aug 29.

Abstract

BACKGROUND

With the rapid increase of chest computed tomography (CT) images, the workload faced by radiologists has increased dramatically. It is undeniable that the use of artificial intelligence (AI) image-assisted diagnosis system in clinical treatment is a major trend in medical development. Therefore, in order to explore the value and diagnostic accuracy of the current AI system in clinical application, we aim to compare the detection and differentiation of benign and malignant pulmonary nodules between AI system and physicians, so as to provide a theoretical basis for clinical application.

METHODS

Our study encompassed a cohort of 23 336 patients who underwent chest low-dose spiral CT screening for lung cancer at the Health Management Center of West China Hospital. We conducted a comparative analysis between AI-assisted reading and manual interpretation, focusing on the detection and differentiation of benign and malignant pulmonary nodules.

RESULTS

The AI-assisted reading exhibited a significantly higher screening positive rate and probability of diagnosing malignant pulmonary nodules compared with manual interpretation (p < 0.001). Moreover, AI scanning demonstrated a markedly superior detection rate of malignant pulmonary nodules compared with manual scanning (97.2% vs. 86.4%, p < 0.001). Additionally, the lung cancer detection rate was substantially higher in the AI reading group compared with the manual reading group (98.9% vs. 90.3%, p < 0.001).

CONCLUSIONS

Our findings underscore the superior screening positive rate and lung cancer detection rate achieved through AI-assisted reading compared with manual interpretation. Thus, AI exhibits considerable potential as an adjunctive tool in lung cancer screening within clinical practice settings.

摘要

背景

随着胸部计算机断层扫描(CT)图像的迅速增加,放射科医生面临的工作量急剧上升。不可否认,人工智能(AI)图像辅助诊断系统在临床治疗中的应用是医学发展的一大趋势。因此,为了探索当前AI系统在临床应用中的价值和诊断准确性,我们旨在比较AI系统与医生在良性和恶性肺结节的检测与鉴别方面的表现,从而为临床应用提供理论依据。

方法

我们的研究纳入了23336例在华西医院健康管理中心接受胸部低剂量螺旋CT肺癌筛查的患者队列。我们对AI辅助阅片和人工解读进行了对比分析,重点关注良性和恶性肺结节的检测与鉴别。

结果

与人工解读相比,AI辅助阅片在筛查阳性率和诊断恶性肺结节的概率方面显著更高(p < 0.001)。此外,与人工扫描相比,AI扫描在恶性肺结节的检测率方面明显更优(97.2%对86.4%,p < 0.001)。另外,AI阅片组的肺癌检测率显著高于人工阅片组(98.9%对90.3%,p < 0.001)。

结论

我们的研究结果强调了与人工解读相比,AI辅助阅片在筛查阳性率和肺癌检测率方面的优势。因此,在临床实践中,AI作为肺癌筛查的辅助工具具有相当大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71c1/11444925/1c5aac5d7e8a/TCA-15-2061-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验