Suppr超能文献

在多中心神经影像学研究中,离群值对用于消除多中心数据异质性的ComBat标准化效果的特征分析。

Characterization of the effects of outliers on ComBat harmonization for removing inter-site data heterogeneity in multisite neuroimaging studies.

作者信息

Han Qichao, Xiao Xiaoxiao, Wang Sijia, Qin Wen, Yu Chunshui, Liang Meng

机构信息

School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Front Neurosci. 2023 May 25;17:1146175. doi: 10.3389/fnins.2023.1146175. eCollection 2023.

Abstract

Data harmonization is a key step widely used in multisite neuroimaging studies to remove inter-site heterogeneity of data distribution. However, data harmonization may even introduce additional inter-site differences in neuroimaging data if outliers are present in the data of one or more sites. It remains unclear how the presence of outliers could affect the effectiveness of data harmonization and consequently the results of analyses using harmonized data. To address this question, we generated a normal simulation dataset without outliers and a series of simulation datasets with outliers of varying properties (e.g., outlier location, outlier quantity, and outlier score) based on a real large-sample neuroimaging dataset. We first verified the effectiveness of the most commonly used ComBat harmonization method in the removal of inter-site heterogeneity using the normal simulation data, and then characterized the effects of outliers on the effectiveness of ComBat harmonization and on the results of association analyses between brain imaging-derived phenotypes and a simulated behavioral variable using the simulation datasets with outliers. We found that, although ComBat harmonization effectively removed the inter-site heterogeneity in multisite data and consequently improved the detection of the true brain-behavior relationships, the presence of outliers could damage severely the effectiveness of ComBat harmonization in the removal of data heterogeneity or even introduce extra heterogeneity in the data. Moreover, we found that the effects of outliers on the improvement of the detection of brain-behavior associations by ComBat harmonization were dependent on how such associations were assessed (i.e., by Pearson correlation or Spearman correlation), and on the outlier location, quantity, and outlier score. These findings help us better understand the influences of outliers on data harmonization and highlight the importance of detecting and removing outliers prior to data harmonization in multisite neuroimaging studies.

摘要

数据归一化是多中心神经影像学研究中广泛使用的关键步骤,用于消除数据分布的中心间异质性。然而,如果一个或多个中心的数据中存在异常值,数据归一化甚至可能在神经影像学数据中引入额外的中心间差异。目前尚不清楚异常值的存在如何影响数据归一化的有效性,进而影响使用归一化数据进行分析的结果。为了解决这个问题,我们基于一个真实的大样本神经影像学数据集,生成了一个没有异常值的正态模拟数据集,以及一系列具有不同属性(如异常值位置、异常值数量和异常值分数)的异常值模拟数据集。我们首先使用正态模拟数据验证了最常用的ComBat归一化方法在消除中心间异质性方面的有效性,然后使用带有异常值的模拟数据集,表征了异常值对ComBat归一化有效性以及对脑成像衍生表型与模拟行为变量之间关联分析结果的影响。我们发现,尽管ComBat归一化有效地消除了多中心数据中的中心间异质性,从而改善了对真实脑-行为关系的检测,但异常值的存在可能严重损害ComBat归一化在消除数据异质性方面的有效性,甚至在数据中引入额外的异质性。此外,我们发现异常值对ComBat归一化改善脑-行为关联检测的影响取决于评估此类关联的方式(即通过Pearson相关或Spearman相关),以及异常值的位置、数量和异常值分数。这些发现有助于我们更好地理解异常值对数据归一化的影响,并突出了在多中心神经影像学研究中,在数据归一化之前检测和去除异常值的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c785/10249749/48d276049110/fnins-17-1146175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验