Bilgel Murat
Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore Maryland USA.
Alzheimers Dement (Amst). 2023 Jul 5;15(3):e12436. doi: 10.1002/dad2.12436. eCollection 2023 Jul-Sep.
It is necessary to accurately account for systematic differences due to variability in scanners, radiotracers, and acquisition protocols in multisite studies combining amyloid imaging data.
We propose Probabilistic Estimation for Across-batch Compatibility Enhancement (PEACE), a fully Bayesian multimodal extension of the widely used ComBat harmonization model, and we apply it to harmonize regional amyloid positron emission tomography data from two scanners.
Simulations show that PEACE recovers true harmonized values better than ComBat, even for unimodal data. PEACE harmonization of multiscanner regional amyloid imaging data yields results that agree better with longitudinal data compared to ComBat, without removing the known biological effects of age or apolipoprotein E genotype.
PEACE outperforms ComBat in both unimodal and bimodal contexts, is applicable to multisite amyloid imaging data, and holds promise for the harmonization of other neuroimaging data over ComBat.
We introduce PEACE, a fully Bayesian multimodal extension of ComBat harmonization.Simulations show that PEACE recovers true harmonized values better than ComBat.PEACE accurately harmonizes multiscanner regional amyloid imaging data.
在整合淀粉样蛋白成像数据的多中心研究中,有必要准确考虑因扫描仪、放射性示踪剂和采集协议的变异性而产生的系统差异。
我们提出了跨批次兼容性增强概率估计(PEACE)方法,它是广泛使用的ComBat归一化模型的全贝叶斯多模态扩展,并将其应用于协调来自两台扫描仪的区域淀粉样蛋白正电子发射断层扫描数据。
模拟表明,即使对于单模态数据,PEACE也比ComBat能更好地恢复真实的归一化值。与ComBat相比,多扫描仪区域淀粉样蛋白成像数据的PEACE归一化产生的结果与纵向数据更一致,同时不会消除年龄或载脂蛋白E基因型已知的生物学效应。
PEACE在单模态和双模态情况下均优于ComBat,适用于多中心淀粉样蛋白成像数据,并且有望在ComBat之上对其他神经成像数据进行归一化处理。
我们引入了PEACE,它是ComBat归一化的全贝叶斯多模态扩展。模拟表明,PEACE比ComBat能更好地恢复真实的归一化值。PEACE能准确地协调多扫描仪区域淀粉样蛋白成像数据。