Suppr超能文献

一种用于预测帕金森病进展的深度学习方法。

A deep learning approach for prediction of Parkinson's disease progression.

作者信息

Shahid Afzal Hussain, Singh Maheshwari Prasad

机构信息

Department of Computer Science & Engineering, National Institute of Technology Patna, Patna, 800005 India.

出版信息

Biomed Eng Lett. 2020 Apr 16;10(2):227-239. doi: 10.1007/s13534-020-00156-7. eCollection 2020 May.

Abstract

This paper proposes a deep neural network (DNN) model using the reduced input feature space of Parkinson's telemonitoring dataset to predict Parkinson's disease (PD) progression. PD is a chronic and progressive nervous system disorder that affects body movement. PD is assessed by using the unified Parkinson's disease rating scale (UPDRS). In this paper, firstly, principal component analysis (PCA) is employed to the featured dataset to address the multicollinearity problems in the dataset and to reduce the dimension of input feature space. Then, the reduced input feature space is fed into the proposed DNN model with a tuned parameter norm penalty (L2) and analyses the prediction performance of it in PD progression by predicting Motor and Total-UPDRS score. The model's performance is evaluated by conducting several experiments and the result is compared with the result of previously developed methods on the same dataset. The model's prediction accuracy is measured by fitness parameters, mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R). The MAE, RMSE, and R values are 0.926, 1.422, and 0.970 respectively for motor-UPDRS. These values are 1.334, 2.221, and 0.956 respectively for Total-UPDRS. Both the Motor and Total-UPDRS score is better predicted by the proposed method. This paper shows the usefulness and efficacy of the proposed method for predicting the UPDRS score in PD progression.

摘要

本文提出了一种深度神经网络(DNN)模型,该模型使用帕金森病远程监测数据集的缩减输入特征空间来预测帕金森病(PD)的进展。帕金森病是一种影响身体运动的慢性进行性神经系统疾病。帕金森病通过统一帕金森病评定量表(UPDRS)进行评估。在本文中,首先,采用主成分分析(PCA)对特征数据集进行处理,以解决数据集中的多重共线性问题并降低输入特征空间的维度。然后,将缩减后的输入特征空间输入到具有调谐参数范数惩罚(L2)的所提出的DNN模型中,并通过预测运动和总UPDRS评分来分析其在帕金森病进展中的预测性能。通过进行多项实验来评估该模型的性能,并将结果与在同一数据集上先前开发的方法的结果进行比较。该模型的预测准确性通过拟合参数、平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R)来衡量。运动UPDRS的MAE、RMSE和R值分别为0.926、1.422和0.970。总UPDRS的这些值分别为1.334、2.221和0.956。所提出的方法对运动和总UPDRS评分的预测效果更好。本文展示了所提出的方法在预测帕金森病进展中的UPDRS评分方面的有用性和有效性。

相似文献

1
A deep learning approach for prediction of Parkinson's disease progression.
Biomed Eng Lett. 2020 Apr 16;10(2):227-239. doi: 10.1007/s13534-020-00156-7. eCollection 2020 May.
6
Predicting the Progression of Parkinson's Disease MDS-UPDRS-III Motor Severity Score from Gait Data using Deep Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:249-252. doi: 10.1109/EMBC46164.2021.9630769.
7
Early diagnosis of Parkinson's disease: A combined method using deep learning and neuro-fuzzy techniques.
Comput Biol Chem. 2023 Feb;102:107788. doi: 10.1016/j.compbiolchem.2022.107788. Epub 2022 Nov 10.
8
Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images.
Comput Biol Med. 2021 May;132:104312. doi: 10.1016/j.compbiomed.2021.104312. Epub 2021 Mar 6.
10
Motor Progression in Early-Stage Parkinson's Disease: A Clinical Prediction Model and the Role of Cerebrospinal Fluid Biomarkers.
Front Aging Neurosci. 2021 Jan 25;12:627199. doi: 10.3389/fnagi.2020.627199. eCollection 2020.

引用本文的文献

6
A review of model evaluation metrics for machine learning in genetics and genomics.
Front Bioinform. 2024 Sep 10;4:1457619. doi: 10.3389/fbinf.2024.1457619. eCollection 2024.
8
Prediction of Parkinson's Disease Using Machine Learning Methods.
Biomolecules. 2023 Dec 8;13(12):1761. doi: 10.3390/biom13121761.
9
Early and High-Accuracy Diagnosis of Parkinson's Disease: Outcomes of a New Model.
Comput Math Methods Med. 2023 Jun 2;2023:1493676. doi: 10.1155/2023/1493676. eCollection 2023.
10
Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification.
Sensors (Basel). 2023 Feb 13;23(4):2085. doi: 10.3390/s23042085.

本文引用的文献

1
Prevalence of Parkinson's disease across North America.
NPJ Parkinsons Dis. 2018 Jul 10;4:21. doi: 10.1038/s41531-018-0058-0. eCollection 2018.
2
Landmark-based deep multi-instance learning for brain disease diagnosis.
Med Image Anal. 2018 Jan;43:157-168. doi: 10.1016/j.media.2017.10.005. Epub 2017 Oct 27.
3
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.
Comput Biol Med. 2018 Sep 1;100:270-278. doi: 10.1016/j.compbiomed.2017.09.017. Epub 2017 Sep 27.
4
Deep Learning for Health Informatics.
IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21. doi: 10.1109/JBHI.2016.2636665. Epub 2016 Dec 29.
5
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.
IEEE Trans Med Imaging. 2017 Apr;36(4):994-1004. doi: 10.1109/TMI.2016.2642839. Epub 2016 Dec 21.
6
An Expert Diagnosis System for Parkinson Disease Based on Genetic Algorithm-Wavelet Kernel-Extreme Learning Machine.
Parkinsons Dis. 2016;2016:5264743. doi: 10.1155/2016/5264743. Epub 2016 May 5.
7
A Multiple-Classifier Framework for Parkinson's Disease Detection Based on Various Vocal Tests.
Int J Telemed Appl. 2016;2016:6837498. doi: 10.1155/2016/6837498. Epub 2016 Apr 12.
8
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
9
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. doi: 10.1109/TMI.2016.2532122. Epub 2016 Feb 18.
10
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验