Shahid Afzal Hussain, Singh Maheshwari Prasad
Department of Computer Science & Engineering, National Institute of Technology Patna, Patna, 800005 India.
Biomed Eng Lett. 2020 Apr 16;10(2):227-239. doi: 10.1007/s13534-020-00156-7. eCollection 2020 May.
This paper proposes a deep neural network (DNN) model using the reduced input feature space of Parkinson's telemonitoring dataset to predict Parkinson's disease (PD) progression. PD is a chronic and progressive nervous system disorder that affects body movement. PD is assessed by using the unified Parkinson's disease rating scale (UPDRS). In this paper, firstly, principal component analysis (PCA) is employed to the featured dataset to address the multicollinearity problems in the dataset and to reduce the dimension of input feature space. Then, the reduced input feature space is fed into the proposed DNN model with a tuned parameter norm penalty (L2) and analyses the prediction performance of it in PD progression by predicting Motor and Total-UPDRS score. The model's performance is evaluated by conducting several experiments and the result is compared with the result of previously developed methods on the same dataset. The model's prediction accuracy is measured by fitness parameters, mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R). The MAE, RMSE, and R values are 0.926, 1.422, and 0.970 respectively for motor-UPDRS. These values are 1.334, 2.221, and 0.956 respectively for Total-UPDRS. Both the Motor and Total-UPDRS score is better predicted by the proposed method. This paper shows the usefulness and efficacy of the proposed method for predicting the UPDRS score in PD progression.
本文提出了一种深度神经网络(DNN)模型,该模型使用帕金森病远程监测数据集的缩减输入特征空间来预测帕金森病(PD)的进展。帕金森病是一种影响身体运动的慢性进行性神经系统疾病。帕金森病通过统一帕金森病评定量表(UPDRS)进行评估。在本文中,首先,采用主成分分析(PCA)对特征数据集进行处理,以解决数据集中的多重共线性问题并降低输入特征空间的维度。然后,将缩减后的输入特征空间输入到具有调谐参数范数惩罚(L2)的所提出的DNN模型中,并通过预测运动和总UPDRS评分来分析其在帕金森病进展中的预测性能。通过进行多项实验来评估该模型的性能,并将结果与在同一数据集上先前开发的方法的结果进行比较。该模型的预测准确性通过拟合参数、平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R)来衡量。运动UPDRS的MAE、RMSE和R值分别为0.926、1.422和0.970。总UPDRS的这些值分别为1.334、2.221和0.956。所提出的方法对运动和总UPDRS评分的预测效果更好。本文展示了所提出的方法在预测帕金森病进展中的UPDRS评分方面的有用性和有效性。