Suppr超能文献

利用混合模型对手绘进行帕金森病诊断。

Diagnosis of Parkinson's disease from hand drawing utilizing hybrid models.

机构信息

Department of Computer Technology, Madras Institute of Technology, Anna University, Chennai, 600044, India.

Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research, Chengalpattu District, 603319, India.

出版信息

Parkinsonism Relat Disord. 2022 Dec;105:24-31. doi: 10.1016/j.parkreldis.2022.10.020. Epub 2022 Oct 27.

Abstract

Parkinson's disease is a nervous system abnormality marked by decreased dopamine levels in the brain. Parkinson's disease inhibits one's ability to move. Speech difficulty, changes in movement and handwriting, and other symptoms are common with Parkinson's disease. A collection of hand drawings is employed to predict Parkinson's disease. There are 102 spiral images in the hand drawing dataset. Due to the minimal size of the dataset, augmentation is utilized to increase it. After that, the augmented images are utilized to train several machine learning and deep learning models, as well as pre-trained networks like RESNET50, VGG16, AlexNet, and VGG19. The performance metrics of hybrid models of deep learning with machine learning and hybrid models of deep learning (for feature extraction) with deep learning (for classification) are then compared. It was observed that the hybrid model of RESNET-50 and SVM performed well with better performance measures compared to other Machine Learning, Deep Learning and Hybrid Models with an accuracy score of 98.45%, sensitivity score of 0.99 and specificity score of 0.98.

摘要

帕金森病是一种神经系统异常,其特征是大脑中的多巴胺水平降低。帕金森病会抑制人的运动能力。言语困难、运动和手写变化以及其他常见的帕金森病症状。使用一组手绘图像来预测帕金森病。手绘数据集包含 102 个螺旋图像。由于数据集的规模很小,因此使用扩充技术来增加数据集。之后,使用扩充后的图像来训练多个机器学习和深度学习模型,以及预训练的网络,如 RESNET50、VGG16、AlexNet 和 VGG19。然后比较了深度学习与机器学习的混合模型和深度学习(用于特征提取)与深度学习(用于分类)的混合模型的性能指标。结果表明,与其他机器学习、深度学习和混合模型相比,RESNET-50 和 SVM 的混合模型表现良好,具有更好的性能指标,准确率为 98.45%,灵敏度为 0.99,特异性为 0.98。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验