Suppr超能文献

紊乱的状态转换学习作为强迫行为的计算标记物。

Disrupted state transition learning as a computational marker of compulsivity.

机构信息

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.

Wellcome Centre for Human Neuroimaging, University College London, London, UK.

出版信息

Psychol Med. 2023 Apr;53(5):2095-2105. doi: 10.1017/S0033291721003846. Epub 2021 Sep 24.

Abstract

BACKGROUND

Disorders involving compulsivity, fear, and anxiety are linked to beliefs that the world is less predictable. We lack a mechanistic explanation for how such beliefs arise. Here, we test a hypothesis that in people with compulsivity, fear, and anxiety, learning a probabilistic mapping between actions and environmental states is compromised.

METHODS

In Study 1 ( = 174), we designed a novel online task that isolated state transition learning from other facets of learning and planning. To determine whether this impairment is due to learning that is too fast or too slow, we estimated state transition learning rates by fitting computational models to two independent datasets, which tested learning in environments in which state transitions were either stable (Study 2: = 1413) or changing (Study 3: = 192).

RESULTS

Study 1 established that individuals with higher levels of compulsivity are more likely to demonstrate an impairment in state transition learning. Preliminary evidence here linked this impairment to a common factor comprising compulsivity and fear. Studies 2 and 3 showed that compulsivity is associated with learning that is too fast when it should be slow (i.e. when state transition are stable) and too slow when it should be fast (i.e. when state transitions change).

CONCLUSIONS

Together, these findings indicate that compulsivity is associated with a dysregulation of state transition learning, wherein the rate of learning is not well adapted to the task environment. Thus, dysregulated state transition learning might provide a key target for therapeutic intervention in compulsivity.

摘要

背景

涉及强迫、恐惧和焦虑的障碍与认为世界缺乏可预测性的信念有关。我们缺乏一种机制解释这种信念是如何产生的。在这里,我们测试了一个假设,即在有强迫、恐惧和焦虑的人群中,对动作与环境状态之间的概率映射进行学习的能力受损。

方法

在研究 1(n=174)中,我们设计了一种新颖的在线任务,该任务将状态转换学习与其他学习和规划方面隔离开来。为了确定这种损伤是由于学习速度过快还是过慢,我们通过拟合计算模型来估计状态转换学习率,该模型针对两个独立数据集进行了测试,这两个数据集分别测试了在状态转换稳定(研究 2:n=1413)或变化(研究 3:n=192)的环境中进行学习的情况。

结果

研究 1 表明,强迫水平较高的个体更有可能表现出状态转换学习的损伤。这里的初步证据将这种损伤与包含强迫和恐惧的共同因素联系起来。研究 2 和研究 3 表明,当状态转换稳定时,强迫与应该缓慢学习时的过快学习(即状态转换稳定)以及当状态转换变化时的过慢学习(即状态转换变化)相关。

结论

这些发现表明,强迫与状态转换学习的失调有关,其中学习的速度不能很好地适应任务环境。因此,失调的状态转换学习可能为强迫治疗干预提供了一个关键目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc79/10106291/cebd758b9096/S0033291721003846_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验