Northeastern University, Boston, MA, 02115, USA.
Biol Cybern. 2023 Oct;117(4-5):331-343. doi: 10.1007/s00422-023-00968-7. Epub 2023 Jun 13.
Some recent artificial neural networks (ANNs) claim to model aspects of primate neural and human performance data. Their success in object recognition is, however, dependent on exploiting low-level features for solving visual tasks in a way that humans do not. As a result, out-of-distribution or adversarial input is often challenging for ANNs. Humans instead learn abstract patterns and are mostly unaffected by many extreme image distortions. We introduce a set of novel image transforms inspired by neurophysiological findings and evaluate humans and ANNs on an object recognition task. We show that machines perform better than humans for certain transforms and struggle to perform at par with humans on others that are easy for humans. We quantify the differences in accuracy for humans and machines and find a ranking of difficulty for our transforms for human data. We also suggest how certain characteristics of human visual processing can be adapted to improve the performance of ANNs for our difficult-for-machines transforms.
一些最近的人工神经网络(ANNs)声称可以模拟灵长类动物神经和人类性能数据的某些方面。然而,它们在物体识别方面的成功依赖于利用低水平特征来解决视觉任务,而人类并非如此。因此,对于 ANN 来说,分布外或对抗性输入通常是具有挑战性的。相反,人类学习抽象模式,并且通常不受许多极端图像失真的影响。我们引入了一组受神经生理学发现启发的新图像变换,并在物体识别任务上评估人类和 ANN。我们表明,对于某些变换,机器的表现优于人类,而对于其他对人类来说容易的变换,机器则难以与人类表现相当。我们量化了人类和机器的准确性差异,并为我们的人类数据变换找到了一个难度排名。我们还提出了如何适应人类视觉处理的某些特征,以提高 ANN 在我们的机器困难变换上的性能。