Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
Adv Mater. 2024 Mar;36(10):e2300951. doi: 10.1002/adma.202300951. Epub 2023 Jun 29.
Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr-MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr-MOF nanozymes embedded in the structure, and hierarchical macro-micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine-tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus-based nerve agent simulants and pesticides from contaminated water.
金属-有机骨架(MOFs)具有路易斯酸催化位点,如基于锆的 MOFs(Zr-MOFs),包含一类越来越多的磷酸酶样纳米酶,可降解有毒的有机磷酸酯农药和神经毒剂。将合成后的粉末状 MOFs 合理地工程化为分级多孔整体式材料,对于它们在新兴应用中的使用至关重要,例如空气和水净化过滤器以及个人防护装备。然而,仍有几个挑战限制了实用 MOF 复合材料的生产,包括需要复杂的反应条件、复合材料中 MOF 催化剂负载量低以及 MOF 基活性位点的可及性差。为了克服这些限制,开发了一种快速合成方法,将 Zr-MOF 纳米酶涂层引入纤维素纳米纤维中,从而形成可加工的整体式气凝胶复合材料,具有高 MOF 负载量。这些复合材料包含嵌入结构中的 Zr-MOF 纳米酶,并且具有分级的宏观-微观孔隙率,可实现对催化活性位点的优异可及性。这种多方面的合理设计策略,包括选择具有多个催化位点的 MOF、精细调整涂层形态以及制造分级结构的整体式气凝胶,可实现对受污染水中的基于有机磷的神经毒剂模拟物和农药的高效连续水解解毒的协同效应。